
UFS Weather Model Users Guide

Oct 06, 2020

CONTENTS

1 Introduction 1

2 Code Overview 5
2.1 UFS Weather Model Hierarchical Repository Structure . 5
2.2 Directory Structure . 6

3 Building and Running the UFS Weather Model 7
3.1 Prerequisite Libraries . 7
3.2 Downloading the Weather Model Code . 8
3.3 Building the Weather Model . 8

3.3.1 Setting environment variables for NCEPLIBS, NCEPLIBS-external and CMake 8
3.3.2 Setting the CCPP_SUITES environment variable . 9
3.3.3 Building the model . 9

3.4 Running the model . 10

4 Inputs and Outputs 11
4.1 Input files . 11

4.1.1 Static datasets (i.e., fix files) . 11
4.1.2 Grid description and initial condition files . 12
4.1.3 Model configuration files . 13
4.1.4 Namelist file input.nml . 19

4.2 Output files . 23
4.3 Additional Information about the FMS Diagnostic Manager . 23

4.3.1 Diagnostic Manager namelist . 23

5 SDF and Namelist Samples and Best Practices 25

6 FAQ 29
6.1 How do I build and run a single test of the UFS Weather Model? . 29
6.2 How do I change the length of the model run? . 30
6.3 How do I select the file format for the model output (netCDF or NEMSIO)? 30

7 Acronyms 31

8 Glossary 33

Index 35

i

ii

CHAPTER

ONE

INTRODUCTION

The Unified Forecast System (UFS) Weather Model (WM) is a prognostic model that can be used for short- and
medium-range research and operational forecasts, as exemplified by its use in the operational Global Forecast System
(GFS) of the National Oceanic and Atmospheric Administration (NOAA). The UFS WM v1.1 is the latest public
release of this software and represents a snapshot of a continuously evolving system undergoing open development.
More information about the UFS can be found in its portal at https://ufscommunity.org/.

Key architectural elements of the UFS WM, along with links to external detailed documentation for those elements,
are listed below:

• The Finite-Volume Cubed-Sphere (FV3) dynamical core.

• The Flexible Modeling System (FMS), a software infrastructure used for functions such as parallelization.

• The Common-Community Physics Package (CCPP), a library of physical parameterizations and the framework
to use it with the model. Parameterization or physics scheme is defined here.

• The stochastic physics capability, including the Stochastic Kinetic Backscatter Scheme (SKEBS), the Stochas-
tically Perturbed Parameterization Tendencies (SPPT) scheme, the perturbed boundary layer humidity (SHUM)
scheme, and the cellular automata method.

• The NOAA Environmental Modeling System (NEMS) model driver used to create the main program.

• The libraries needed to build the system, such as:

– National Centers for Environmental Prediction (NCEP) Libraries

– Earth System Modeling Framework (ESMF)

– External libraries

• The build system used to compile the code and generate the executable.

• The regression tests used to maintain software integrity as innovations are added.

For the UFS WM v1.1 release, the following aspects are supported:

• Global configuration with resolutions of C96 (~100 km), C192 (~50 km), C384 (25 km), and C768 (~13 km)

• Sixty-four vertical levels at predetermined locations.

• Four physics suites (suite), corresponding to GFS v15.2 (operational at the time of the release) and GFS v16beta
(October 2019 version, in preparation for operational implementation in 2021). Variants with and without
prediction of Sea Surface Temperature (SST) are included.

• Ability to run with or without SKEBS, SPPT, and SHUM.

• Ability to initialize from GFS files in Gridded Binary v2 (GRIB2), NEMS Input/Output (NEMSIO), or Network
Common Data Form (netCDF) format for past dates, starting January 1, 2018, when the preprocessing utility
chgres_cube is employed. Dates before that may work, but are not guaranteed.

1

https://ufscommunity.org/
https://noaa-emc.github.io/FV3_Dycore_ufs-v1.1.0/html/index.html
https://www.gfdl.noaa.gov/fms/
https://dtcenter.org/community-code/common-community-physics-package-ccpp
https://stochastic-physics.readthedocs.io/en/ufs-v1.1.0/
https://noaa-emc.github.io/NEMS_doc_ufs-v1.1.0/index.html
https://github.com/NOAA-EMC/NCEPLIBS/wiki
https://www.earthsystemcog.org/projects/esmf/
https://github.com/NOAA-EMC/NCEPLIBS-external/wiki

UFS Weather Model Users Guide

• Output files in Network Common Data Form (NetCDF) format.

The GFS_v15p2 physics suite uses the following physical parameterizations: the Simplified Arakawa Schubert shal-
low and deep convective schemes, the Geophysical Fluid Dynamics Laboratory (GFDL) microphysics scheme, the
Noah Land Surface Model (LSM), the Rapid Radiative Transfer Model for Global Circulation Models (RRTMG) ra-
diation scheme, the hybrid eddy-diffusivity mass-flux (EDMF) planetary boundary layer (PBL) scheme based on the
Smagorinsky K theory, an orographic gravity wave drag (GWD) parameterization, and the Near SST (NSST) ocean
scheme to predict SST. In the GFS_v16beta suite, a moist TKE-based EDMF scheme replaces the K-based one and a
non-stationary GWD parameterization is added. The GFS_v15p2_no_nsst and the GFS_v16beta_no_nsst suites use a
simple ocean scheme instead of the NSST scheme. This simple ocean scheme keeps the SST constant throughout the
forecast and is recommended for use when the initial conditions do not contain all fields needed to initialize the NSST
scheme.

Even when using physics suite GFS_v15p2, the UFS WM v1.1 differs from the operational GFS v15.2 in a few ways.
First, the public release code reflects the state of development as of the fall of 2019, and therefore the parameterizations
contain innovations beyond what is in GFSv15.2 operations. For example, the GFDL microphysics distributed for
use in GFS v15.2 and GFS v16beta is the same scheme and contains development beyond what was transitioned to
operations for GFS v15 in June 2019. Second, the public release code uses the CCPP as the interface for calling
physics, while in operations the Interoperable Physics Driver (IPD) is used. NOAA is currently working toward
phasing out the IPD from UFS applications. Validation tests demonstrated that CCPP and IPD give bit-for-bit identical
results when the same physics is employed and selected performance flags are excluded at compilation time. When
performance compiler flags employed in operational production are used, runs with CCPP and IPD for the same
physics suite yield differences comparable to running the model in different computational platforms. Finally, the
operational GFS runs in NOAA Central Operations computational platforms. When users run the model in different
platforms, the results will differ.

It should also be noted that further changes are expected to the GFS v16 suite before it is implemented in operations
in 2021.

The UFS WM v1 code is portable and can be used with Linux and Mac operating systems with Intel and GNU
compilers. It has been tested in a variety of platforms widely used by atmospheric scientists, such as the NOAA
research Hera system, the National Center for Atmospheric Research (NCAR) Cheyenne system, the National Science
Foundation Stampede system, and Mac laptops.

Note: At this time, the following aspects are unsupported: standalone regional domains, configurations in which a
mediator is used to couple the atmospheric model to models of other earth domains (such as ocean, ice, and waves),
horizontal resolutions other than the supported ones, different number or placement of vertical levels, physics suites
other than GFS v15.2 and GFS v16beta, the cellular automata stochastic scheme, initialization from sources other
than GFS, the use of different file formats for input and output, and the use of the model in different computational
platforms. It is expected that the UFS WM supported capabilities will be expanded in future releases.

It should be noted that the UFS WM is a component of the UFS Medium-Range (MR) Weather Application (App),
which also contains pre- and post-processing components, a comprehensive build system, and workflows for config-
uration and execution of the application. At this time, the UFS WM is only supported to the general community for
use as part of the UFS MR Weather App. However, those wishing to contribute development to the UFS WM should
become familiar with the procedures for running the model as a standalone component and for executing the regression
tests described in the UFS WM GitHub wiki to make sure no inadvertent changes to the results have been introduced
during the development process.

Support for the UFS WM is provided through the UFS Forum by the Developmental Testbed Center (DTC) and other
groups involved in UFS development, such as NOAA’s Environmental Modeling Center (EMC), NOAA research
laboratories (GFDL, NSSL, ESRL, and AOML), and NCAR. UFS users and developers are encouraged not only to
post questions, but also to help address questions posted by other members of the community.

This WM User’s Guide is organized as follows:

2 Chapter 1. Introduction

https://github.com/ufs-community/ufs-weather-model/wiki/Making-code-changes-in-the-UFS-weather-model-and-its-subcomponents
https://forums.ufscommunity.org/forum/ufs-weather-model

UFS Weather Model Users Guide

• Chapter 2 (Code Overview) provides a description of the various code repositories from which source code is
pulled and an overview of the directory structure.

• Chapter 3 (Building and Running the WM) explains how to use the WM without an application.

• Chapter 4 (Inputs and Outputs) lists the model inputs and outputs and has a description of the key files.

• Chapter 5 (SDF and namelist samples and best practices) contains a description of the Suite Definition File
(SDF) and namelists needed to configure the model for running with the GFS v15.2 and GFS v16beta physics
suites.

• Chapter 6 (FAQ) lists frequently asked questions and answers.

Finally, Chapters 7 and 8 contain a list of acronyms and a glossary, respectively.

3

UFS Weather Model Users Guide

4 Chapter 1. Introduction

CHAPTER

TWO

CODE OVERVIEW

2.1 UFS Weather Model Hierarchical Repository Structure

The ufs-weather-model repository supports the short- and medium-range UFS applications. It contains atmosphere
and wave components and some infrastructure components. Each of these components has its own repository. All the
repositories are currently located in GitHub with public access to the broad community. Table 2.1 describes the list of
repositories that comprises the ufs-weather-model.

Table 2.1: List of Repositories that comprise the ufs-weather-model
Repository Description Authoritative repository URL
Umbrella repository for the UFS Weather Model https://github.com/ufs-community/ufs-weather-model
Infrastructure: Flexible Modeling System https://github.com/NOAA-GFDL/FMS
Infrastructure: NOAA Environmental Modeling System https://github.com/NOAA-EMC/NEMS
Infrastructure: Utilities https://github.com/NOAA-EMC/

NCEPLIBS-pyprodutil
Framework to connect the CCPP library to a host model https://github.com/NCAR/ccpp-framework
CCPP library of physical parameterizations https://github.com/NCAR/ccpp-physics
Umbrella repository for the physics and dynamics of the
atmospheric model

https://github.com/NOAA-EMC/fv3atm

FV3 dynamical core https://github.com/NOAA-GFDL/GFDL_atmos_
cubed_sphere

Stochastic physics pattern generator https://github.com/noaa-psd/stochastic_physics

In the table, the left column contains a description of each repository, and the right column shows the component
repositories which are pointing to (or will point to) the authoritative repositories. The ufs-weather-model currently
uses git submodule to manage the sub-components.

The umbrella repository for the UFS Weather Model is named ufs-weather-model. Under this repository reside a
number of submodules that are nested in specific directories under the parent repository’s working directory. When
the ufs-weather-model repository is cloned, the .gitmodules file creates the following directories:

ufs-weather-model/
FMS https://github.com/NOAA-GFDL/FMS
FV3 https://github.com/NOAA-EMC/fv3atm

atmos_cubed_sphere https://github.com/NOAA-GFDL/GFDL_atmos_
→˓cubed_sphere

ccpp
framework https://github.com/NCAR/ccpp-framework
physics https://github.com/NCAR/ccpp-physics

NEMS https://github.com/NOAA-EMC/NEMS

(continues on next page)

5

https://github.com/ufs-community/ufs-weather-model
https://github.com/NOAA-GFDL/FMS
https://github.com/NOAA-EMC/NEMS
https://github.com/NOAA-EMC/NCEPLIBS-pyprodutil
https://github.com/NOAA-EMC/NCEPLIBS-pyprodutil
https://github.com/NCAR/ccpp-framework
https://github.com/NCAR/ccpp-physics
https://github.com/NOAA-EMC/fv3atm
https://github.com/NOAA-GFDL/GFDL_atmos_cubed_sphere
https://github.com/NOAA-GFDL/GFDL_atmos_cubed_sphere
https://github.com/noaa-psd/stochastic_physics

UFS Weather Model Users Guide

(continued from previous page)

tests/produtil/NCEPLIBS-pyprodutil https://github.com/NOAA-EMC/NCEPLIBS-
→˓pyprodutil

stochastic_physics https://github.com/noaa-psd/stochastic_
→˓physics

2.2 Directory Structure

When the ufs-weather-model is cloned, the basic directory structure will be similar to the example below. Files and
some directories have been removed for brevity.

ufs-weather-model/
cmake --------- cmake configuration files
compsets --------- configurations used by some regression tests
conf --------- compile options for Tier 1 and 2 platforms
doc --------- READMEs with build, reg-test hints
FMS --------- The Flexible Modeling System (FMS),a software

→˓framework
FV3 --------- FV3 atmosphere model

atmos_cubed_sphere ---- FV3 dynamic core
docs
driver
model
tools

ccpp -------- Common Community Physics Package
config
driver
framework -------- CCPP framework
physics -------- CCPP compliant physics schemes
suites -------- CCPP physics suite definition files (SDFs)

cpl -------- Coupling field data structures
gfsphysics

CCPP_layer
GFS_layer
physics --------- unused - IPD version of physics codes

io --------- FV3 write grid comp code
ipd --------- unused - IPD driver/interfaces

| stochastic_physics ----- Cmakefile for stochastic physics code
log --------- log files from NEMS compset regression tests
modulefiles --------- system module files for supported HPC systems
NEMS --------- NOAA Earth Modeling System framework

exe
src
test

parm --------- regression test configurations
stochastic_physics -------- stochastic physics pattern generator
tests --------- regression test scripts

The physics subdirectory in the gfsphysics directory is not used or supported as part of this release (all physics is
available through the CCPP using the repository described in Table 2.1).

6 Chapter 2. Code Overview

CHAPTER

THREE

BUILDING AND RUNNING THE UFS WEATHER MODEL

3.1 Prerequisite Libraries

The UFS Weather Model requires a number of libraries for it to compile. There are two categories of libraries that are
needed:

1. Bundled libraries (NCEPLIBS). These are libraries developed for use with NOAA weather models. Most have
an NCEPLIBS prefix in the repository, e.g. NCEPLIBS-bacio. Select tools from the UFS Utilities repository
(UFS-UTILS) are also included in this category. A list of the bundled libraries tested with this WM release is in
the top-level README of the NCEPLIBS repository (be sure to look at the tag in that repository that matches
the tag on this WM release).

2. Third-party libraries (NCEPLIBS-external). These are libraries that were developed external to the UFS Weather
Model. They are general software packages that are also used by other models in the community. Building these
is optional, since existing builds of these libraries can be pointed to instead. A list of the external libraries tested
with this WM release is in the top-level README of the NCEPLIBS-external repository. Again, be sure to look
at the tag in that repository that matches the tag on this WM release.

Note: The libraries in NCEPLIBS-external must be built before the libraries in NCEPLIBS.

See this wiki link for an explanation of which platforms and compilers are supported. This will help to determine if
you need to build NCEPLIBS and NCEPLIBS-external or are working on a system that is already pre-configured. On
pre-configured platforms, the libraries are already available.

If you do have to build the libraries, it is a good idea to check the platform- and compiler-specific README files in
the doc/ directory of the NCEPLIBS-external repository as a first step, to see if your system or one similar to it is
included. These files have detailed instructions for building NCEPLIBS-external, NCEPLIBS, and the UFS Weather
Model. They may be all the documentation you need. Be sure to use the tag that corresponds to this version of the
WM, and define a WORK directory path before you get started.

If your platform is not included in these platform- and compiler-specific README files, there is a more generic set
of instructions in the README file at the top level of the NCEPLIBS-external repository, and at the top level of the
NCEPLIBS repository. It may still be a good idea to look at some of the platform- and compiler-specific README
files as a guide. Again, be sure to use the tag that corresponds to this version of the WM.

The top-level README in the NCEPLIBS-external repository includes a troubleshooting section that may be helpful.

You can also get expert help through a user support forum set up specifically for issues related to build dependencies.

7

https://github.com/NOAA-EMC/NCEPLIBS/tree/ufs-v1.1.0
https://github.com/NOAA-EMC/NCEPLIBS-external/tree/ufs-v1.1.0
https://github.com/ufs-community/ufs/wiki/Supported-Platforms-and-Compilers
https://github.com/NOAA-EMC/NCEPLIBS-external/tree/ufs-v1.1.0
https://github.com/NOAA-EMC/NCEPLIBS-external/tree/ufs-v1.1.0
https://github.com/NOAA-EMC/NCEPLIBS/tree/ufs-v1.1.0
https://forums.ufscommunity.org/forum/build-dependencies

UFS Weather Model Users Guide

3.2 Downloading the Weather Model Code

To clone the ufs-weather-model repository for this v1.1.0 release, execute the following commands:

git clone https://github.com/ufs-community/ufs-weather-model.git ufs-weather-model
cd ufs-weather-model
git checkout ufs-v1.1.0
git submodule update --init --recursive

Compiling the model will take place within the ufs-weather-model directory you just created.

3.3 Building the Weather Model

3.3.1 Setting environment variables for NCEPLIBS, NCEPLIBS-external and CMake

You will need to make sure that the WM has the paths to the libraries that it requires. In order to do that, these
environment variables need to be set, as shown in Table 3.1 and Table 3.2 for the bash shell.

Table 3.1: Bundled libraries (NCEPLIBS) required for the Weather
Model

NCEP Library Environment Variables
nemsio export NEMSIO_INC=<path_to_nemsio_include_dir>

export NEMSIO_LIB=<path_to_nemsio_lib_dir>/libnemsio<version>.a
bacio export BACIO_LIB4=<path_to_bacio_lib_dir>/libbacio<version>.a
splib export SP_LIBd=<path_to_sp_lib_dir>/libsp<version>_d.a
w3emc export W3EMC_LIBd=<path_to_w3emc_lib_dir>/libw3emc<version>_d.a
w3nco export W3NCO_LIBd=<path_to_w3nco_lib_dir>/libw3nco<version>_d.a

Table 3.2: Third-party libraries (NCEPLIBS-external) required for the
Weather Model

Library Environment Variables
NetCDF export NETCDF=<path_to_netcdf_install_dir>
ESMF export ESMFMKFILE=<path_to_esmfmk_file>/esmf.mk

The following are a few different ways to set the required environment variables to the correct values. If you are
running on one of the pre-configured platforms, you can set them using modulefiles. Modulefiles for all supported
platforms are located in modulefiles/<platform>/fv3. To load the modules from the ufs-weather-model
directory on hera:

cd modulefiles/hera.intel
module use $(pwd)
module load fv3
cd ../..

Note that loading this module file will also set the CMake environment variables shown in Table 3.3.

8 Chapter 3. Building and Running the UFS Weather Model

https://github.com/ufs-community/ufs/wiki/Supported-Platforms-and-Compilers

UFS Weather Model Users Guide

Table 3.3: CMake environment variables required to configure the build
for the Weather Model

EnvironmentVariable Description Hera Intel Value
CMAKE_C_COMPILER Name of C compiler mpiicc
CMAKE_CXX_COMPILER Name of C++ compiler mpiicpc
CMAKE_Fortran_COMPILER Name of Fortran compiler mpiifort
CMAKE_Platform String containing platform and compiler name hera.intel

If you are not running on one of the pre-configured platforms, you will need to set the environment variables in a
different way.

If you used one of the platform- and compiler-specific README files in the doc/ directory of NCEPLIBS-
external to build the prerequisite libraries, there is a script in the NCEPLIBS-ufs-v1.1.0/bin directory called
setenv_nceplibs.sh that will set the NCEPLIBS-external variables for you.

Of course, you can also set the values of these variables yourself if you know where the paths are on your system.

3.3.2 Setting the CCPP_SUITES environment variable

In order to have one or more CCPP physics suites available at runtime, you need to select those suites at build time by
setting the CCPP_SUITES environment variable. Multiple suites can be set, as shown below in an example for the
bash shell:

export CCPP_SUITES="FV3_GFS_v15p2,FV3_GFS_v16beta"

If CCPP_SUITES is not set, the default is set to ‘FV3_GFS_v15p2’ in build.sh.

3.3.3 Building the model

The UFS Weather Model uses the CMake build system. There is a build script called build.sh in the top-level
directory of the WM repository that configures the build environment and runs the make command. This script also
checks that all necessary environment variables have been set.

If any of the environment variables have not been set, the build.sh script will exit with a message similar to:

./build.sh: line 11: CMAKE_Platform: Please set the CMAKE_Platform environment
→˓variable, e.g. [macosx.gnu|linux.gnu|linux.intel|hera.intel|...]

The WM can be built by running the following command from the ufs-weather-model directory:

./build.sh

Once build.sh is finished, you should see the executable, named ufs_weather_model, in the top-level direc-
tory.

Expert help is available through a user support forum set up specifically for issues related to the Weather Model.

3.3. Building the Weather Model 9

https://forums.ufscommunity.org/forum/ufs-weather-model

UFS Weather Model Users Guide

3.4 Running the model

The UFS Weather Model wiki includes a simple test case that illustrates how the model can be run.

10 Chapter 3. Building and Running the UFS Weather Model

https://github.com/ufs-community/ufs-weather-model/wiki

CHAPTER

FOUR

INPUTS AND OUTPUTS

This chapter describes the input and output files needed for executing the model in the various supported configura-
tions.

4.1 Input files

There are three types of files needed to execute a run: static datasets (fix files containing climatological information),
files that depend on grid resolution and initial conditions, and model configuration files (such as namelists).

4.1.1 Static datasets (i.e., fix files)

The static input files are listed and described in Table 4.1.

11

UFS Weather Model Users Guide

Table 4.1: Fix files containing climatological information
Filename Description
aerosol.dat External aerosols data file
CFSR.SEAICE.1982.2012.monthly.clim.grb CFS reanalysis of monthly sea ice climatology
co2historicaldata_YYYY.txt Monthly CO2 in PPMV data for year YYYY
global_albedo4.1x1.grb Four albedo fields for seasonal mean climatology: 2 for strong

zenith angle dependent (visible and near IR) and 2 for weak
zenith angle dependent

global_glacier.2x2.grb Glacier points, permanent/extreme features
global_h2oprdlos.f77 Coefficients for the parameterization of photochemical pro-

duction and loss of water (H2O)
global_maxice.2x2.grb Maximum ice extent, permanent/extreme features
global_mxsnoalb.uariz.t126.384.190.rg.grb Climatological maximum snow albedo
global_o3prdlos.f77 Monthly mean ozone coefficients
global_shdmax.0.144x0.144.grb Climatological maximum vegetation cover
global_shdmin.0.144x0.144.grb Climatological minimum vegetation cover
global_slope.1x1.grb Climatological slope type
global_snoclim.1.875.grb Climatological snow depth
global_snowfree_albedo.bosu.t126.384.190.rg.grb Climatological snowfree albedo
global_soilmgldas.t126.384.190.grb Climatological soil moisture
global_soiltype.statsgo.t126.384.190.rg.grb Soil type from the STATSGO dataset
global_tg3clim.2.6x1.5.grb Climatological deep soil temperature
global_vegfrac.0.144.decpercent.grb Climatological vegetation fraction
global_vegtype.igbp.t126.384.190.rg.grb Climatological vegetation type
global_zorclim.1x1.grb Climatological surface roughness
RTGSST.1982.2012.monthly.clim.grb Monthly, climatological, real-time global sea surface tempera-

ture
seaice_newland.grb High resolution land mask
sfc_emissivity_idx.txt External surface emissivity data table
solarconstant_noaa_an.txt External solar constant data table

4.1.2 Grid description and initial condition files

The input files containing grid information and the initial conditions are listed and described in Table 4.2.

Table 4.2: Input files containing grid information and initial conditions
Filename Description Date-

dependent
C96_grid.tile[1-6].nc C96 grid information for tiles 1-6
gfs_ctrl.nc NCEP NGGPS tracers, ak, and bk XXX
gfs_data.tile[1-6].nc Initial condition fields (ps, u, v, u, z, t, q, O3). May

include spfo3, spfo, spf02 if multiple gases are used
XXX

oro_data.tile[1-6].nc Model terrain (topographic/orographic information) for
grid tiles 1-6

sfc_ctrl.nc Control parameters for surface input: forecast hour,
date, number of soil levels

sfc_data.tile[1-6].nc Surface properties for grid tiles 1-6 XXX

12 Chapter 4. Inputs and Outputs

UFS Weather Model Users Guide

4.1.3 Model configuration files

The configuration files used by the UFS Weather Model are listed here and described below:

• diag_table

• field_table

• model_configure

• nems.configure

• suite_[suite_name].xml (used only at build time)

While the input.nml file is also a configuration file used by the UFS Weather Model, it is described in Section 4.1.4.

diag_table file

There are three sections in file diag_table: Header (Global), File, and Field. These are described below.

Header Description

The Header section must reside in the first two lines of the diag_table file and contain the title and date of the exper-
iment (see example below). The title must be a Fortran character string. The base date is the reference time used for
the time units, and must be greater than or equal to the model start time. The base date consists of six space-separated
integers in the following format: year month day hour minute second. Here is an example:

20161003.00Z.C96.64bit.non-mono
2016 10 03 00 0 0

File Description

The File Description lines are used to specify the name of the file(s) to which the output will be written. They contain
one or more sets of six required and five optional fields (optional fields are denoted by square brackets []). The lines
containing File Descriptions can be intermixed with the lines containing Field Descriptions as long as files are defined
before fields that are to be written them. File entries have the following format:

"file_name", output_freq, "output_freq_units", file_format, "time_axis_units", "time_
→˓axis_name"
[, new_file_freq, "new_file_freq_units"[, "start_time"[, file_duration, "file_
→˓duration_units"]]]

These file line entries are described in Table 4.3.

4.1. Input files 13

UFS Weather Model Users Guide

Table 4.3: Description of the six required and five optional fields used to
define output file sampling rates.

File Entry Variable Type Description
file_name CHARACTER(len=128) Output file name without the trailing “.nc”
output_freq INTEGER

The period between records in the file_name:
> 0 output frequency in output_freq_units.
= 0 output frequency every time step
(output_freq_units is ignored)
=-1 output at end of run only (output_freq_units is
ignored)

output_freq_units CHARACTER(len=10) The units in which output_freq is given. Valid values are
“years”, “months”, “days”, “minutes”, “hours”, or “seconds”.

file_format INTEGER Currently only the netCDF file format is supported. = 1
netCDF

time_axis_units CHARACTER(len=10) The units to use for the time-axis in the file. Valid values are
“years”, “months”, “days”, “minutes”, “hours”, or “seconds”.

time_axis_name CHARACTER(len=128) Axis name for the output file time axis. The character string
must contain the string ‘time’. (mixed upper and lowercase
allowed.)

new_file_freq INTEGER, OPTIONAL Frequency for closing the existing file, and creating a new file
in new_file_freq_units.

new_file_freq_units CHARACTER(len=10),
OPTIONAL

Time units for creating a new file: either years, months, days,
minutes, hours, or seconds. NOTE: If the new_file_freq field
is present, then this field must also be present.

start_time CHARACTER(len=25),
OPTIONAL

Time to start the file for the first time. The format of this string
is the same as the global date. NOTE: The new_file_freq and
the new_file_freq_units fields must be present to use this field.

file_duration INTEGER, OPTIONAL How long file should receive data after start time in
file_duration_units. This optional field can only be used if the
start_time field is present. If this field is absent, then the file
duration will be equal to the frequency for creating new files.
NOTE: The file_duration_units field must also be present if
this field is present.

file_duration_units CHARACTER(len=10),
OPTIONAL

File duration units. Can be either years, months, days, min-
utes, hours, or seconds. NOTE: If the file_duration field is
present, then this field must also be present.

Field Description

The field section of the diag_table specifies the fields to be output at run time. Only fields registered with
register_diag_field(), which is an API in the FMS diag_manager routine, can be used in the diag_table.

Registration of diagnostic fields is done using the following syntax

diag_id = register_diag_field(module_name, diag_name, axes, ...)

in file FV3/atmos_cubed_sphere/tools/fv_diagnostics.F90. As an example, the sea level pressure is
registered as:

id_slp = register_diag_field (trim(field), 'slp', axes(1:2), & Time, 'sea-level
→˓pressure', 'mb', missing_value=missing_value, range=slprange)

14 Chapter 4. Inputs and Outputs

UFS Weather Model Users Guide

All data written out by diag_manager is controlled via the diag_table. A line in the field section of the diag_table
file contains eight variables with the following format:

"module_name", "field_name", "output_name", "file_name", "time_sampling", "reduction_
→˓method", "regional_section", packing

These field section entries are described in Table 4.4.

Table 4.4: Description of the eight variables used to define the fields
written to the output files.

Field Entry Variable Type Description
module_name CHARACTER(len=128) Module that contains the field_name variable. (e.g. dynamic,

gfs_phys, gfs_sfc)
field_name CHARACTER(len=128) The name of the variable as registered in the model.
output_name CHARACTER(len=128) Name of the field as written in file_name.
file_name CHARACTER(len=128) Name of the file where the field is to be written.
time_sampling CHARACTER(len=50) Currently not used. Please use the string “all”.
reduction_method CHARACTER(len=50) The data reduction method to perform prior to writing data

to disk. Current supported option is .false.. See FMS/
diag_manager/diag_table.F90 for more information.

regional_section CHARACTER(len=50) Bounds of the regional section to capture. Current supported
option is “none”. See FMS/diag_manager/diag_table.
F90 for more information.

packing INTEGER Fortran number KIND of the data written. Valid values: 1=dou-
ble precision, 2=float, 4=packed 16-bit integers, 8=packed 1-byte
(not tested).

Comments can be added to the diag_table using the hash symbol (#).

A brief example of the diag_table is shown below. “...” denote where lines have been removed.

20161003.00Z.C96.64bit.non-mono
2016 10 03 00 0 0

"grid_spec", -1, "months", 1, "days", "time"
"atmos_4xdaily", 6, "hours", 1, "days", "time"
"atmos_static" -1, "hours", 1, "hours", "time"
"fv3_history", 0, "hours", 1, "hours", "time"
"fv3_history2d", 0, "hours", 1, "hours", "time"

#
#=======================
ATMOSPHERE DIAGNOSTICS
#=======================
###
grid_spec
###
"dynamics", "grid_lon", "grid_lon", "grid_spec", "all", .false., "none", 2,
"dynamics", "grid_lat", "grid_lat", "grid_spec", "all", .false., "none", 2,
"dynamics", "grid_lont", "grid_lont", "grid_spec", "all", .false., "none", 2,
"dynamics", "grid_latt", "grid_latt", "grid_spec", "all", .false., "none", 2,
"dynamics", "area", "area", "grid_spec", "all", .false., "none", 2,

###
4x daily output
###

(continues on next page)

4.1. Input files 15

UFS Weather Model Users Guide

(continued from previous page)

"dynamics", "slp", "slp", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", "vort850", "vort850", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", "vort200", "vort200", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", "us", "us", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", "u1000", "u1000", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", "u850", "u850", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", "u700", "u700", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", "u500", "u500", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", "u200", "u200", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", "u100", "u100", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", "u50", "u50", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", "u10", "u10", "atmos_4xdaily", "all", .false., "none", 2

...
###
gfs static data
###
"dynamics", "pk", "pk", "atmos_static", "all", .false., "none", 2
"dynamics", "bk", "bk", "atmos_static", "all", .false., "none", 2
"dynamics", "hyam", "hyam", "atmos_static", "all", .false., "none", 2
"dynamics", "hybm", "hybm", "atmos_static", "all", .false., "none", 2
"dynamics", "zsurf", "zsurf", "atmos_static", "all", .false., "none", 2

###
FV3 variables needed for NGGPS evaluation
###
"gfs_dyn", "ucomp", "ugrd", "fv3_history", "all", .false., "none",
→˓2
"gfs_dyn", "vcomp", "vgrd", "fv3_history", "all", .false., "none",
→˓2
"gfs_dyn", "sphum", "spfh", "fv3_history", "all", .false., "none",
→˓2
"gfs_dyn", "temp", "tmp", "fv3_history", "all", .false., "none",
→˓2
...
"gfs_phys", "ALBDO_ave", "albdo_ave", "fv3_history2d", "all", .false., "none", 2
"gfs_phys", "cnvprcp_ave", "cprat_ave", "fv3_history2d", "all", .false., "none", 2
"gfs_phys", "cnvprcpb_ave", "cpratb_ave","fv3_history2d", "all", .false., "none", 2
"gfs_phys", "totprcp_ave", "prate_ave", "fv3_history2d", "all", .false., "none", 2
...
"gfs_sfc", "crain", "crain", "fv3_history2d", "all", .false., "none", 2
"gfs_sfc", "tprcp", "tprcp", "fv3_history2d", "all", .false., "none", 2
"gfs_sfc", "hgtsfc", "orog", "fv3_history2d", "all", .false., "none", 2
"gfs_sfc", "weasd", "weasd", "fv3_history2d", "all", .false., "none", 2
"gfs_sfc", "f10m", "f10m", "fv3_history2d", "all", .false., "none", 2

...

More information on the content of this file can be found in FMS/diag_manager/diag_table.F90.

Note: None of the lines in the diag_table can span multiple lines.

16 Chapter 4. Inputs and Outputs

UFS Weather Model Users Guide

field_table file

The FMS field and tracer managers are used to manage tracers and specify tracer options. All tracers advected by
the model must be registered in an ASCII table called field_table. The field table consists of entries in the following
format:

The first line of an entry should consist of three quoted strings:

• The first quoted string will tell the field manager what type of field it is. The string “TRACER” is used to
declare a field entry.

• The second quoted string will tell the field manager which model the field is being applied to. The sup-
ported type at present is “atmos_mod” for the atmosphere model.

• The third quoted string should be a unique tracer name that the model will recognize.

The second and following lines are called methods. These lines can consist of two or three quoted strings. The first
string will be an identifier that the querying module will ask for. The second string will be a name that the querying
module can use to set up values for the module. The third string, if present, can supply parameters to the calling
module that can be parsed and used to further modify values.

An entry is ended with a forward slash (/) as the final character in a row. Comments can be inserted in the field table
by having a hash symbol (#) as the first character in the line.

Below is an example of a field table entry for the tracer called “sphum”:

added by FRE: sphum must be present in atmos
specific humidity for moist runs
"TRACER", "atmos_mod", "sphum"

"longname", "specific humidity"
"units", "kg/kg"
"profile_type", "fixed", "surface_value=3.e-6" /

In this case, methods applied to this tracer include setting the long name to “specific humidity”, the units to “kg/kg”.
Finally a field named “profile_type” will be given a child field called “fixed”, and that field will be given a field called
“surface_value” with a real value of 3.E-6. The “profile_type” options are listed in Table 4.5. If the profile type is
“fixed” then the tracer field values are set equal to the surface value. If the profile type is “profile” then the top/bottom
of model and surface values are read and an exponential profile is calculated, with the profile being dependent on the
number of levels in the component model.

Table 4.5: Tracer profile setup from
FMS/tracer_manager/tracer_manager.F90.

Method Type Method Name Method Control
profile_type fixed surface_value = X
profile_type profile surface_value = X, top_value = Y (atmosphere)

For the case of

"profile_type","profile","surface_value = 1e-12, top_value = 1e-15"

in a 15 layer model this would return values of surf_value = 1e-12 and multiplier = 0.6309573, i.e 1e-15 = 1e-
12*(0.6309573^15).

A method is a way to allow a component module to alter the parameters it needs for various tracers. In essence,
this is a way to modify a default value. A namelist can supply default parameters for all tracers and a method, as
supplied through the field table, will allow the user to modify the default parameters on an individual tracer basis.
The lines in this file can be coded quite flexibly. Due to this flexibility, a number of restrictions are required. See
FMS/field_manager/field_manager.F90 for more information.

4.1. Input files 17

UFS Weather Model Users Guide

model_configure file

This file contains settings and configurations for the NUOPC/ESMF main component, including the simulation start
time, the processor layout/configuration, and the I/O selections. Table 4.6 shows the following parameters that can be
set in model_configure at run-time.

Table 4.6: Parameters that can be set in model_configure at run-time.
Parameter Meaning Type Default Value
print_esmf flag for ESMF PET files logical .true.
PE_MEMBER01 total number of tasks for ensemble

number 1
integer 150 (for c96 with quilt)

start_year start year of model integration integer 2019
start_month start month of model integration integer 09
start_day start day of model integration integer 12
start_hour start hour of model integration integer 00
start_minute start minute of model integration integer 0
start_second start second of model integration integer 0
nhours_fcst total forecast length integer 48
dt_atmos atmosphere time step in second integer 1800 (for C96)
output_1st_tstep_rst output first time step history file after

restart
logical .false.

memuse_verbose flag for printing out memory usage logical .false.
atmos_nthreads number of threads for atmosphere integer 4
restart_interval frequency to output restart file integer 0 (write restart file at the

end of integration)
quilting flag to turn on quilt logical .true.
write_groups total number of groups integer 2
write_tasks_per_group total number of write tasks in each

write group
integer 6

output_history flag to output history files logical .true.
num_files number of output files integer 2
filename_base file name base for the output files character(255) ‘atm’ ‘sfc’
output_grid output grid character(255) gaussian_grid
output_file output file format character(255) nemsio
imo i-dimension for output grid integer 384
jmo j-dimension for output grid integer 190
nfhout history file output frequency integer 3
nfhmax_hf forecast length of high history file integer 0 (0:no high frequency

output)
nfhout_hf high history file output frequency integer 1
nsout output frequency of number of time

step
integer -1 (negative: turn off the

option, 1: output history
file at every time step)

Table 4.7 shows the following parameters in model_configure that are not usually changed.

18 Chapter 4. Inputs and Outputs

UFS Weather Model Users Guide

Table 4.7: Parameters that are not usually changed in model_configure
at run-time.

Parameter Meaning Type Default Value
total_member total number of ensemble member integer 1
RUN_CONTINUE Flag for more than one NEMS run logical .false.
ENS_SPS flag for the ensemble stochastic cou-

pling flag
logical .false.

calendar type of calendar year character(*) ‘gregorian’
fhrot forecast hour at restart for nems/earth

grid component clock in coupled
model

integer 0

cpl flag for coupling with MOM6/CICE5 logical .false.
write_dopost flag to do post on write grid compo-

nent
logical .false.

ideflate lossless compression level integer 1 (0:no compression,
range 1-9)

nbits lossy compression level integer 14 (0: lossless, range 1-
32)

write_nemsioflip flag to flip the vertical level for nemsio
file

logical .true.

write_fsyncflag flag to check if a file is synced to disk logical .true.
iau_offset IAU offset lengdth integer 0

nems.configure file

This file contains information about the various NEMS components and their run sequence. In the current release, this
is an atmosphere-only model, so this file is simple and does not need to be changed. A sample of the file contents is
below:

EARTH_component_list: ATM
ATM_model: fv3
runSeq::

ATM
::

The SDF (Suite Definition File) file

There are two SDFs currently supported: suite_FV3_GFS_v15p2.xml and suite_FV3_GFS_v16beta.xml.

4.1.4 Namelist file input.nml

The atmosphere model reads many parameters from a Fortran namelist file, named input.nml. This file contains
several Fortran namelist records, some of which are always required, others of which are only used when selected
physics options are chosen.

The following link describes the various physics-related namelist records:

https://dtcenter.ucar.edu/GMTB/v4.1.0/sci_doc/CCPPsuite_nml_desp.html

The following link describes the stochastic physics namelist records:

https://stochastic-physics.readthedocs.io/en/ufs-v1.1.0/namelist_options.html

4.1. Input files 19

https://dtcenter.ucar.edu/GMTB/v4.1.0/sci_doc/CCPPsuite_nml_desp.html
https://stochastic-physics.readthedocs.io/en/ufs-v1.1.0/namelist_options.html

UFS Weather Model Users Guide

The following link describes some of the other namelist records (dynamics, grid, etc):

https://noaa-emc.github.io/FV3_Dycore_ufs-v1.1.0/html/index.html

The namelist section &interpolator_nml is not used in this release, and any modifications to it will have no
effect on the model results.

fms_io_nml

The namelist section &fms_io_nml of input.nml contains variables that control reading and writing of restart
data in netCDF format. There is a global switch to turn on/off the netCDF restart options in all of the modules that read
or write these files. The two namelist variables that control the netCDF restart options are fms_netcdf_override
and fms_netcdf_restart. The default values of both flags are .true., so by default, the behavior of the entire
model is to use netCDF IO mode. To turn off netCDF restart, simply set fms_netcdf_restart to .false.. The
namelist variables used in &fms_io_nml are described in Table 4.8.

Table 4.8: Description of the &fms_io_nml namelist section.
Variable Name Description Data Type Default

Value
fms_netcdf_override If true, fms_netcdf_restart overrides

the individual do_netcdf_restart value.
If false, individual module settings has a
precedence over the global setting, therefore
fms_netcdf_restart is ignored.

logical .true.

fms_netcdf_restart If true, all modules using restart files will op-
erate under netCDF mode. If false, all mod-
ules using restart files will operate under bi-
nary mode. This flag is effective only when
fms_netcdf_override is .true. When
fms_netcdf_override is .false., individual
module setting takes over.

logical .true.

threading_read Can be ‘single’ or ‘multi’ character(len=32) ‘multi’
format Format of restart data. Only netCDF format is

supported in fms_io.
character(len=32) ‘netcdf’

read_all_pe Reading can be done either by all PEs (default) or
by only the root PE.

logical .true.

iospec_ieee32 If set, call mpp_open single 32-bit ieee file for
reading.

character(len=64) ‘-N
ieee_32’

max_files_w Maximum number of write files integer 40
max_files_r Maximum number of read files integer 40
time_stamp_restart If true, time_stamp will be added to the restart

file name as a prefix.
logical .true.

print_chksum If true, print out chksum of fields that are read
and written through save_restart/restore_state.

logical .false.

show_open_namelist_file_warningFlag to warn that open_namelist_file should not
be called when INTERNAL_FILE_NML is de-
fined.

logical .false.

debug_mask_list Set debug_mask_list to true to print out
mask_list reading from mask_table.

logical .false.

checksum_required If true, compare checksums stored in the attribute
of a field against the checksum after reading in
the data.

logical .true.

20 Chapter 4. Inputs and Outputs

https://noaa-emc.github.io/FV3_Dycore_ufs-v1.1.0/html/index.html

UFS Weather Model Users Guide

This release of the UFS Weather Model sets the following variables in the &fms_io_nml namelist:

&fms_io_nml
checksum_required = .false.
max_files_r = 100
max_files_w = 100

/

namsfc

The namelist section &namsfc contains the filenames of the static datasets (i.e., fix files). Table 4.1 contains a brief
description of the climatological information in these files. The variables used in &namsfc to set the filenames are
described in Table 4.9.

Table 4.9: List of common variables in the *namsfc namelist section used
to set the filenames of static datasets.*

Variable Name File contains Data Type Default Value
fnglac Climatological glacier data character*500 ‘global_glacier.2x2.grb’
fnmxic Climatological maximum ice extent character*500 ‘global_maxice.2x2.grb’
fntsfc Climatological surface temperature character*500 ‘global_sstclim.2x2.grb’
fnsnoc Climatological snow depth character*500 ‘global_snoclim.1.875.grb’
fnzorc Climatological surface roughness character*500 ‘global_zorclim.1x1.grb’
fnalbc Climatological snowfree albedo character*500 ‘global_albedo4.1x1.grb’
fnalbc2 Four albedo fields for seasonal mean climatology character*500 ‘global_albedo4.1x1.grb’
fnaisc Climatological sea ice character*500 ‘global_iceclim.2x2.grb’
fntg3c Climatological deep soil temperature character*500 ‘global_tg3clim.2.6x1.5.grb’
fnvegc Climatological vegetation cover character*500 ‘global_vegfrac.1x1.grb’
fnvetc Climatological vegetation type character*500 ‘global_vegtype.1x1.grb’
fnsotc Climatological soil type character*500 ‘global_soiltype.1x1.grb’
fnsmcc Climatological soil moisture character*500 ‘global_soilmcpc.1x1.grb’
fnmskh High resolution land mask field character*500 ‘global_slmask.t126.grb’
fnvmnc Climatological minimum vegetation cover character*500 ‘global_shdmin.0.144x0.144.grb’
fnvmxc Climatological maximum vegetation cover character*500 ‘global_shdmax.0.144x0.144.grb’
fnslpc Climatological slope type character*500 ‘global_slope.1x1.grb’
fnabsc Climatological maximum snow albedo character*500 ‘global_snoalb.1x1.grb’

A sample subset of this namelist is shown below:

&namsfc
FNGLAC = 'global_glacier.2x2.grb'
FNMXIC = 'global_maxice.2x2.grb'
FNTSFC = 'RTGSST.1982.2012.monthly.clim.grb'
FNSNOC = 'global_snoclim.1.875.grb'
FNZORC = 'igbp'
FNALBC = 'global_snowfree_albedo.bosu.t126.384.190.rg.grb'
FNALBC2 = 'global_albedo4.1x1.grb'
FNAISC = 'CFSR.SEAICE.1982.2012.monthly.clim.grb'
FNTG3C = 'global_tg3clim.2.6x1.5.grb'
FNVEGC = 'global_vegfrac.0.144.decpercent.grb'
FNVETC = 'global_vegtype.igbp.t126.384.190.rg.grb'
FNSOTC = 'global_soiltype.statsgo.t126.384.190.rg.grb'
FNSMCC = 'global_soilmgldas.t126.384.190.grb'
FNMSKH = 'seaice_newland.grb'

(continues on next page)

4.1. Input files 21

UFS Weather Model Users Guide

(continued from previous page)

FNVMNC = 'global_shdmin.0.144x0.144.grb'
FNVMXC = 'global_shdmax.0.144x0.144.grb'
FNSLPC = 'global_slope.1x1.grb'
FNABSC = 'global_mxsnoalb.uariz.t126.384.190.rg.grb'

/

Additional variables for the &namsfc namelist can be found in the FV3/ccpp/physics/physics/sfcsub.F
file.

atmos_model_nml

The namelist section &atmos_model_nml contains information used by the atmosphere model. The variables used
in &atmos_model_nml are described in Table 4.10.

Table 4.10: List of common variables in the *atmos_model_nml namelist
section.

Variable
Name

Description Data Type Default Value

blocksize Number of columns in each block sent to the
physics. OpenMP threading is done over the
number of blocks. For best performance this
number should divide the number of grid cells
per processor: ((npx-1)*(npy-1)/(layout\
_x)*(layout_y)). A description of these vari-
ables is provided here.

integer 1

chksum_debugIf true, compute checksums for all variables passed into
the GFS physics, before and after each physics timestep.
This is very useful for reproducibility checking.

logical .false.

dycore_only If true, only the dynamical core (and not the GFS
physics) is executed when running the model, essen-
tially running the model as a solo dynamical core.

logical .false.

debug If true, turn on additional diagnostics for the atmo-
spheric model.

logical .false.

sync If true, initialize timing identifiers. logical .false.
fdiag Array with dimension maxhr = 4096 listing the diag-

nostic output times (in hours) for the GFS physics. This
can either be a list of times after initialization, or an
interval if only the first entry is nonzero. The default
setting of 0 will result in no outputs.

real
0.

fhmax The maximal forecast time for output. real 384.0
fhmaxhf The maximal forecast hour for high frequency output. real 120.0
fhout Output frequency during forecast time from 0 to

fhmax, or from fhmaxhf to fhmax if fhmaxf>0.
real 3.0

fhouthf The high frequency output frequency during the forecast
time from 0 to fhmaxhf hour.

real 1.0

ccpp_suite Name of the CCPP physics suite character(len=256) FV3_GFS_v15p2,
set in build.sh

avg_max_lengthForecast interval (in seconds) determining when the
maximum values of diagnostic fields in FV3 dynamics
are computed.

real
3600.

22 Chapter 4. Inputs and Outputs

https://noaa-emc.github.io/FV3_Dycore_ufs-v1.1.0/html/group__Parameters__List.html

UFS Weather Model Users Guide

A sample of this namelist is shown below:

&atmos_model_nml
blocksize = 32
chksum_debug = .false.
dycore_only = .false.
fdiag = 1
fhmax = 384
fhout = 3
fhmaxhf = 120
fhouthf = 1
ccpp_suite = 'FV3_GFS_v16beta'

/

The namelist section relating to the FMS diagnostic manager &diag_manager_nml is described in Section 4.3.1.

4.2 Output files

The following files are output when running fv3.exe in the default configuration (six files of each kind, corresponding
to the six tiles of the model grid):

• atmos_4xdaily.tile[1-6].nc

• atmos_static.tile[1-6].nc

• sfcfHHH.nc

• atmfHHH.nc

• grid_spec.tile[1-6].nc

Note that the sfcf* and atmf* files are not output on the 6 tiles, but instead as a single global gaussian grid file. The
specifications of the output files (type, projection, etc) may be overridden in the model_configure input file.

Standard output files are logf???, and out and err as specified by the job submission. ESMF may also produce log files
(controlled by variable print_esmf in the model_configure file), called PET???.ESMF_LogFile.

4.3 Additional Information about the FMS Diagnostic Manager

The UFS Weather Model output is managed through the FMS (Flexible Modeling System) diagnostic manager (FMS/
diag_manager) and is configured using the diag_table file. Data can be written at any number of sampling and/or
averaging intervals specified at run-time. More information about the FMS diagnostic manager can be found at:
https://data1.gfdl.noaa.gov/summer-school/Lectures/July16/03_Seth1_DiagManager.pdf

4.3.1 Diagnostic Manager namelist

The diag_manager_nml namelist contains values to control the behavior of the diagnostic manager. Some of the
more common namelist options are described in Table 4.11. See FMS/diag_manager/diag_manager.F90 for
the complete list.

4.2. Output files 23

https://data1.gfdl.noaa.gov/summer-school/Lectures/July16/03_Seth1_DiagManager.pdf

UFS Weather Model Users Guide

Table 4.11: Namelist variables used to control the behavior of the diag-
nostic manager.

Namelist variable Type Description Default value
max_files INTEGER Maximum number of files allowed in diag_table 31
max_output_fields INTEGER Maximum number of output fields allowed in

diag_table
300

max_input_fields INTEGER Maximum number of registered fields allowed 300
prepend_date LOGICAL Prepend the file start date to the output file. .TRUE.

is only supported if the diag_manager_init routine
is called with the optional time_init parameter.

.TRUE.

do_diag_field_log LOGICAL Write out all registered fields to a log file .FALSE.
use_cmor LOGICAL Override the missing_value to the CMOR value of

-1.0e20
.FALSE.

issue_oor_warnings LOGICAL Issue a warning if a value passed to diag_manager
is outside the given range

.TRUE.

oor_warnings_fatal LOGICAL Treat out-of-range errors as FATAL .FALSE.
debug_diag_manager LOGICAL Check if the diag table is set up correctly .FALSE.

This release of the UFS Weather Model uses the following namelist:

&diag_manager_nml
prepend_date = .false.

/

24 Chapter 4. Inputs and Outputs

CHAPTER

FIVE

SDF AND NAMELIST SAMPLES AND BEST PRACTICES

The public release of the UFS MR Weather App includes four supported physics suites: GFS_v15p2,
GFS_v15p2_no_nsst, GFS_v16beta, and GFS_v16beta_no_nsst. You will find the Suite Definition Files (SDFs) for
these suites in

https://github.com/NOAA-EMC/fv3atm/tree/ufs-v1.1.0/ccpp/suites

(no other SDFs are available with this release). You will find the namelists for the C96 configuration here:

https://github.com/ufs-community/ufs-weather-model/tree/ufs-v1.1.0/parm/ccpp_v15p2_c96.nml.IN

and

https://github.com/ufs-community/ufs-weather-model/tree/ufs-v1.1.0/parm/ccpp_v16beta_c96.nml.IN

As noted in the file names, these namelists are for the operational (v15p2) and developmental (v16beta) GFS suites.
Each of these namelists are relevant to the suites with and without the SST prediction scheme, that is, they are relevant
for the suite that employs NSST and for the suite that employs the simple ocean model (no_nsst). The only difference
in the namelist regarding how SST prediction is addressed is variable nstf_name. For more information about this
variable and for information about namelist options for higher resolution configurations, please consult the CCPP
v4.1.0 Scientific Documentation.

The four CCPP suites for the UFS MR Weather App release are supported in four grid resolutions: C96, C192, C384,
and C768, with 64 vertical levels.

An in depth description of the namelist settings, SDFs, and parameterizations used in all supported suites can be
found in the CCPP v4.1.0 Scientific Documentation. Note both suites do not use stochastic physics by default, but the
stochastic physics can be activated following the instructions described in the stochastic physics v1.1 user’s guide.

Both the SDF and the input.nml contain information about how to specify the physics suite. Some of this information
is redundant, and the user must make sure they are compatible. The safest practice is to use the SDF and namelist
provided for each suite, since those are supported configurations.

Changes to the SDF must be accompanied by corresponding changes to the namelist. While there is not a one-to-one
correspondence between the namelist and the SDF, Table 5.1 shows some variables in the namelist that must match
the SDF.

25

https://github.com/NOAA-EMC/fv3atm/tree/ufs-v1.1.0/ccpp/suites
https://github.com/ufs-community/ufs-weather-model/tree/ufs-v1.1.0/parm/ccpp_v15p2_c96.nml.IN
https://github.com/ufs-community/ufs-weather-model/tree/ufs-v1.1.0/parm/ccpp_v16beta_c96.nml.IN
https://dtcenter.org/GMTB/v4.1.0/sci_doc/
https://dtcenter.org/GMTB/v4.1.0/sci_doc/
https://dtcenter.org/GMTB/v4.1.0/sci_doc/
https://stochastic-physics.readthedocs.io/en/ufs-v1.1.0/

UFS Weather Model Users Guide

Table 5.1: Variables related to PBL options
Namelist
option

Meaning Possible
Val-
ues

Default Used with
CCPP scheme

Recommentation

PBL-related variables
do_myjpbl Flag to activate the MYJ

PBL scheme
T F mypbl_wrapper Set to F for GFSv15p2*

and GFSv16beta*
do_myjsfc Flag to activate the MYJ

PBL surface layer scheme
T, F F myjsfc_wrapper Set to F for GFSv15p2*

and GFSv16beta*
do_mynnedmf Flag to activate the MYNN-

EDMF scheme
T, F F mynnedmf_wrapperSet to F for GFSv15p2*

and GFSv16beta*
do_ysu Flag to activate the YSU

PBL scheme
T, F F ysudif Set to F for GFSv15p2*

and GFSv16beta*
hybedmf Flag to activate the K-based

PBL scheme
T, F F hedmf Set to T for GFSv15p2*

and GFSv16beta*
isatedmf Flag for version of scale-

aware TKE-based EDMF
scheme

0, 1 0 0=satmedmfvdif,
1=satmedmfvd-
ifq

Set to 0 for GFSv15p2* and
1 for GFSv16beta*

ism Flag to choose a land sur-
face model to use

0, 1, 2 1 1=lsm_noah,
2=lsm_ruc

Set to 1 for GFSv15p2* and
GFSv16beta*

satedmf Flag to activate the scale-
aware TKE-based EDMF
scheme

T, F F satmedmfvdif or
satmedmfvdifq

Set to T for GFSv15p2*
and GFSv16beta*

shinhong Flag to activate the Shin-
Hong PBL parameteriza-
tion

T, F F shinhongdif Set to F for GFSv15p2*
and GFSv16beta*

Convection-releated flags
cscnv Flag to activate the Chikira-

Sugiyama deep convection
scheme

T, F F cs_conv Set to F for GFSv15p2*
and GFSv16beta*

do_aw Flag to activate the
Arakawa-Wu extension to
the Chikira-Sugiyama deep
convection scheme

T, F F cs_conv_aw_adj Set to F for GFSv15p2*
and GFSv16beta*

imfdeepcnv Flag to choose a mass flux
deep convective scheme

-1, 2,
3, 4

-1 -1=no deep
convection*,
2=samfshalcnv,
3=cu_gf_driver,
4=cu_ntiedtke

Set to 2 for GFSv15p2* and
GFSv16beta*

imfshalcvn Flag to choose a mass flux
shallow convective scheme

-1, 2,
3, 4

-1 -1=no deep
convection*,
2=samfshalcnv,
3=cu_gf_driver,
4=cu_ntiedtke

Set to 2 for GFSv15p2* and
GFSv16beta*

*Even when imfdeepcvn=-1, the Chikira-Sugiyama deep convection scheme may be specified using cscnv=T.

Other miscellaneous changes to the SDF that must be accompanied by corresponding changes in the namelist are listed
in Table 5.2.

26 Chapter 5. SDF and Namelist Samples and Best Practices

UFS Weather Model Users Guide

Table 5.2: Miscellaneous namelist variables and their relation to the
SDF

Namelist
option

Meaning Possible
Val-
ues

Default Used with
CCPP scheme

Recommendation

Miscellaneous variables
do_myjsfc Flag to activate the MYJ

PBL surface scheme
T, F F mynnsfc_wrapper Set to F for GFSv15p2*

and GFSv16beta*
do_shoc Flag to activate the Simpli-

fied Higher-Order Closure
(SHOC) parameterization

T, F F shoc Set to F for GFSv15p2*
and GFSv16beta*

do_ugwp** Flag to activate the unified
Gravity Wave Physics pa-
rameterization

T, F F cires_ugwp Set to F for GFSv15p2*
and GFSv16beta*

imp_physics Flag to choose a micro-
physics scheme

8, 10,
11

99 8=mp_thompson,
10=m_micro,
11=gfdl_cloud_microphysics

Set to 11 for GFSv15p2*
and GFSv16beta*

lsm Flag to choose a land sur-
face model to use

0, 1, 2 1 1=lsm_noah,
2=lsm_ruc

Set to 1 for GFSv15p2* and
GFSv16beta*

lsoil Number of soil layers 4, 9 4 4 for lsm_noah, 9
for lsm_ruc

Set to 4 for GFSv15p2* and
GFSv16beta*

h2o_phys Flag for stratosphere h2o
scheme

T, F h2ophys Set to T for GFSv15p2*
and GFSv16beta*

oz_phys_2015 Flag for new (2015) ozone
physics

T, F ozphys_2015 Set to T for GFSv15p2*
and GFSv16beta*

**The CIRES Unified Gravity Wave Physics (cires_ugwp) scheme is used in GFSv15p2* and GFSv16beta* SDFs
with do_ugwp=F in the namelist. In this setting, the cires_ugwp calls the operational GFS v15.2 orographic gravity
wave drag (gwdps) scheme. When do_ugwp=T, the cires_ugwp scheme calls an experimental orographic gravity wave
(gwdps_v0).

Note that some namelist variables are not available for use with CCPP.

• do_deep. In order to disable deep convection, it is necessary to remove the deep convection scheme from the
SDF.

• shal_cnv. In order to disable shallow convection, it is necessary to remove the deep convection scheme from
the SDF.

• ldiag3d and ldiag_ugwp. Must be F for CCPP runs.

• gwd_opt. Ignored in CCPP-supported suites.

When certain parameterizations are turned on, additional namelist options can be used (they are ignored oth-
erwise). Some examples are shown in Table 5.3.

27

UFS Weather Model Users Guide

Table 5.3: Enabled namelist variables
Namelist
setting

Enabled namelist variables

do_ugwp=T All variables in namelist record &cires_ugwp_nml plus do_tofd. Additionally, if namelist vari-
able cnvgwd=T and the third and fourth position of namelist array cdmbgwd are both 1, then
the convective gravity wave drag that is part of cires_ugwp will be called. (Not supported with
the UFS)

do_mynnedmf=T bl_mynn_tkeadvect, bl_mynn_edmf, bl_mynn_edmf_mom (Not supported with the UFS)
imp_physics=99 psautco and prautco (Not supported with the UFS)
imp_physics=10 mg_* (Not supported with UFS)
imp_physics=11 All variables in namelist record gfdl_cloud_microphysics_nml and lgfdlmprad
satedmf=T isatedmf

28 Chapter 5. SDF and Namelist Samples and Best Practices

CHAPTER

SIX

FAQ

6.1 How do I build and run a single test of the UFS Weather Model?

An efficient way to build and run the UFS Weather Model is to use the regression test (rt.sh). This script is widely
used by model developers on Tier 1 and 2 platforms and is described in the UFS WM GitHub wiki. The advantages to
this approach are:

• It does not require a workflow, pre- or post-processing steps.

• The batch submission script is generated.

• Any required input data is already available for machines used by the regression test.

• Once the rt.sh test completes, you will have a working copy in your run directory where you can make
modifications to the namelist and other files, and then re-run the executable.

The steps are:

1. Clone the source code and all the submodules as described in Section 3.2, then go into the tests directory:

cd ufs-weather-model (or the top level where you checked out the code)
cd tests

2. Find a configure (*.conf) file that contains the machine and compiler you are using. For this example, the
Intel compiler on Cheyenne is used. To create a custom configure file, two lines are needed: a COMPILE line
and a RUN line. The COMPILE line should contain the name of the machine and compiler cheyenne.intel
and the desired SUITES for the build. Choose a RUN line under this COMPILE command that uses the desired
SUITE. For example:

COMPILE | 32BIT=Y CCPP=Y STATIC=Y SUITES=FV3_GFS_v15p2,FV3_GFS_v16beta,FV3_GFS_
→˓v15p2_no_nsst,FV3_GFS_v16beta_no_nsst | standard |
→˓cheyenne.intel | fv3
RUN | fv3_ccpp_gfs_v16beta
→˓ | standard |
→˓ | fv3 |

Put these two lines into a file called my_test.conf. The parameters used in this run can be found in the
fv3_ccpp_gfs_v16beta file in the ufs-weather-model/tests/tests directory.

Note: These two lines are long and may not appear in entirety in your browser. Scroll to the right to see the
entire line.

3. Modify the rt.sh script to put the output in a run directory where you have write permission:

29

https://github.com/ufs-community/ufs-weather-model/wiki/Making-code-changes-in-the-UFS-weather-model-and-its-subcomponents

UFS Weather Model Users Guide

if [[$MACHINE_ID = cheyenne.*]]; then stanza:
...
dprefix=/glade/scratch

This works for Cheyenne, since $USER/FV3_RTwill be appended. Also check that RTPWD points to a diretory
that exists:

if [[$MACHINE_ID = cheyenne.*]]; then
RTPWD=${RTPWD:-$DISKNM/ufs-public-release-20200224/${COMPILER^^}}

4. Run the rt.sh script from the tests directory:

./rt.sh -k -l my_test.conf >& my_test.out &

Check my_test.out for build and run status, plus other standard output. Check /glade/scratch/
$USER/FV3_RT/rt_PID for the model run, where PID is a process ID. The build will take about 10-15
minutes and the run will be fast, depending on how long it waits in the queue. A message "REGRESSION
TEST WAS SUCCESSFUL" will be written to this file, along with other entertainment: 'Elapsed time:
00h:14m:12s. Have a nice day!'.

5. When the build and run are complete, modify the namelist or model_configure files and re-run by submit-
ting the job_card file:

qsub job_card

6.2 How do I change the length of the model run?

In your run directory, there is a file named model_configure. Change the variable nhours_fcst to the desired
number of hours.

6.3 How do I select the file format for the model output (netCDF or
NEMSIO)?

In your run directory, there is a file named model_configure. Change the variable output_file to 'netcdf'
or 'nemsio'. The variable output_file if only valid when the write component is activated by setting
quilting to .true. in the model_configure file.

30 Chapter 6. FAQ

CHAPTER

SEVEN

ACRONYMS

Acronyms Explanation
AOML NOAA’s Atlantic Oceanographic and Meteorological Laboratory
API Application Programming Interface
b4b Bit-for-bit
CCPP Common Community Physics Package
dycore Dynamical core
EDMF Eddy-Diffusivity Mass Flux
EMC Environmental Modeling Center
ESMF The Earth System Modeling Framework
ESRL NOAA Earth System Research Laboratories
FMS Flexible Modeling System
FV3 Finite-Volume Cubed Sphere
GFDL NOAA Geophysical Fluid Dynamics Laboratory
GFS Global Forecast System
GSD Global Systems Division
HTML Hypertext Markup Language
LSM Land Surface Model
MPI Message Passing Interface
NCAR National Center for Atmospheric Research
NCEP National Centers for Environmental Predicction
NEMS NOAA Environmental Modeling System
NOAA National Oceanic and Atmospheric Administration
NSSL National Severe Storms Laboratory
PBL Planetary Boundary Layer
PR Pull request
RRTMG Rapid Radiative Transfer Model for Global Circulation Models
SAS Simplified Arakawa-Schubert
SDF Suite Definition File
sfc Surface
SHUM Perturbed boundary layer specific humidity
SKEB Stochastic Kinetic Energy Backscatter
SPPT Stochastically Perturbed Physics Tendencies
TKE Turbulent Kinetic Energy
UFS Unified Forecast System
WM Weather Model

31

UFS Weather Model Users Guide

32 Chapter 7. Acronyms

CHAPTER

EIGHT

GLOSSARY

CCPP Model agnostic, vetted, collection of codes containing atmospheric physical parameterizations and suites for
use in NWP along with a framework that connects the physics to host models

CCPP-Framework The infrastructure that connects physics schemes with a host model; also refers to a software
repository of the same name

CCPP-Physics The pool of CCPP-compliant physics schemes; also refers to a software repository of the same name

FMS The Flexible Modeling System (FMS) is a software framework for supporting the efficient development, con-
struction, execution, and scientific interpretation of atmospheric, oceanic, and climate system models.

NEMS The NOAA Environmental Modeling System - a software infrastructure that supports NCEP/EMC’s forecast
products.

NUOPC The National Unified Operational Prediction Capability is a consortium of Navy, NOAA, and Air Force
modelers and their research partners. It aims to advance the weather modeling systems used by meteorologists,
mission planners, and decision makers. NUOPC partners are working toward a common model architecture - a
standard way of building models - in order to make it easier to collaboratively build modeling systems.

Parameterization or physics scheme The representation, in a dynamic model, of physical effects in terms of ad-
mittedly oversimplified parameters, rather than realistically requiring such effects to be consequences of the
dynamics of the system (AMS Glossary)

Suite Definition File (SDF) An external file containing information about the construction of a physics suite. It
describes the schemes that are called, in which order they are called, whether they are subcycled, and whether
they are assembled into groups to be called together

Suite A collection of primary physics schemes and interstitial schemes that are known to work well together

UFS A Unified Forecast System (UFS) is a community-based, coupled comprehensive Earth system modeling sys-
tem. The UFS numerical applications span local to global domains and predictive time scales from sub-hourly
analyses to seasonal predictions. It is designed to support the Weather Enterprise and to be the source system
for NOAA’s operational numerical weather prediction applications

Weather Model A prognostic model that can be used for short- and medium-range research and operational fore-
casts. It can be an atmosphere-only model or be an atmospheric model coupled with one or more additional
components, such as a wave or ocean model.

33

UFS Weather Model Users Guide

34 Chapter 8. Glossary

INDEX

C
CCPP, 33
CCPP-Framework, 33
CCPP-Physics, 33

F
FMS, 33

N
NEMS, 33
NUOPC, 33

P
Parameterization or physics scheme, 33

S
Suite, 33
Suite Definition File (SDF), 33

U
UFS, 33

W
Weather Model, 33

35

	Introduction
	Code Overview
	UFS Weather Model Hierarchical Repository Structure
	Directory Structure

	Building and Running the UFS Weather Model
	Prerequisite Libraries
	Downloading the Weather Model Code
	Building the Weather Model
	Setting environment variables for NCEPLIBS, NCEPLIBS-external and CMake
	Setting the CCPP_SUITES environment variable
	Building the model

	Running the model

	Inputs and Outputs
	Input files
	Static datasets (i.e., fix files)
	Grid description and initial condition files
	Model configuration files
	Namelist file input.nml

	Output files
	Additional Information about the FMS Diagnostic Manager
	Diagnostic Manager namelist

	SDF and Namelist Samples and Best Practices
	FAQ
	How do I build and run a single test of the UFS Weather Model?
	How do I change the length of the model run?
	How do I select the file format for the model output (netCDF or NEMSIO)?

	Acronyms
	Glossary
	Index

