

Welcome to the UFS Weather Model User’s Guide

	1. Introduction

	2. Code Overview
	2.1. UFS Weather Model Hierarchical Repository Structure

	2.2. Directory Structure

	3. Building and Running the UFS Weather Model
	3.1. Prerequisite Libraries

	3.2. Downloading the Weather Model Code

	3.3. Building the Weather Model
	3.3.1. Setting environment variables for paths to NCEPLIBS and NCEPLIBS-external

	3.3.2. Setting other environment variables

	3.3.3. Building the model

	3.4. Running the model

	4. Inputs and Outputs
	4.1. Input files
	4.1.1. Static datasets (i.e., fix files)

	4.1.2. Grid description and initial condition files

	4.1.3. Model configuration files

	4.2. Output files

	4.3. Additional Information about the FMS Diagnostic Manager
	4.3.1. Diagnostic Manager namelist

	5. SDF and Namelist Samples and Best Practices

	6. Contributing Development
	6.1. Making code changes using a forking workflow

	6.2. Engaging in the code review process

	6.3. Conducting regression tests

	7. Acronyms

	8. Glossary

1. Introduction

The Unified Forecast System (UFS) Weather Model (WM) is a prognostic model that can be
used for short- and medium-range research and operational forecasts, as exemplified by
its use in the operational Global Forecast System (GFS) of the National Oceanic and
Atmospheric Administration (NOAA). The UFS WM v1.0 is the first public release of this
software and represents a snapshot of a continuously evolving system undergoing open
development. More information about the UFS can be found in its portal at https://ufscommunity.org/.

Key architectural elements of the UFS WM, along with links to external detailed documentation
for those elements, are listed below:

	The Finite-Volume Cubed-Sphere (FV3) dynamical core [https://noaa-emc.github.io/FV3_Dycore_ufs-v1.0.0/html/index.html].

	The Flexible Modeling System [https://www.gfdl.noaa.gov/fms/] (FMS), a software infrastructure used for functions such as
parallelization.

	The Common-Community Physics Package [https://dtcenter.org/community-code/common-community-physics-package-ccpp] (CCPP), a library of
physical parameterizations and the framework to use it with the model. Parameterization or physics scheme is defined here.

	The stochastic physics capability [https://stochastic-physics.readthedocs.io/en/ufs-v1.0.0/], including the Stochastic Kinetic Backscatter Scheme (SKEBS),
the Stochastically Perturbed Parameterization Tendencies (SPPT) scheme, the perturbed boundary
layer humidity (SHUM) scheme, and the cellular automata method.

	The NOAA Environmental Modeling System [https://noaa-emc.github.io/NEMS_doc_ufs-v1.0.0/index.html] (NEMS) model driver used to create the main program.

	
	The libraries needed to build the system, such as:
	
	National Centers for Environmental Prediction (NCEP) Libraries [https://github.com/NOAA-EMC/NCEPLIBS/wiki]

	Earth System Modeling Framework (ESMF) [https://www.earthsystemcog.org/projects/esmf/]

	External libraries [https://github.com/NOAA-EMC/NCEPLIBS-external/wiki]

	The build system used to compile the code and generate the executable.

	The regression tests used to maintain software integrity as innovations are added.

For the UFS WM v1.0 release, the following aspects are supported:

	Global configuration with resolutions of C96 (~100 km), C192 (~50 km), C384 (25 km), and C768 (~13 km)

	Sixty-four vertical levels at predetermined locations.

	Four physics suites (suite), corresponding to GFS v15.2 (operational at the time of the release) and
GFS v16beta (October 2019 version, in preparation for operational implementation in 2021). Variants
with and without prediction of Sea Surface Temperature (SST) are included.

	Ability to run with or without SKEBS, SPPT, and SHUM.

	Ability to initialize from GFS files in Gridded Binary v2 (GRIB2) or NEMS
Input/Output (NEMSIO) format for past dates,
starting January 1, 2018, when the preprocessing utility chgres_cube is employed. Dates before
that may work, but are not guaranteed.

	Output files in Network Common Data Form (NetCDF) format.

The GFS_v15p2 physics suite uses the following physical parameterizations: the
Simplified Arakawa Schubert shallow and deep convective schemes, the Geophysical
Fluid Dynamics Laboratory (GFDL) microphysics scheme, the Noah Land Surface Model (LSM),
the Rapid Radiative Transfer Model for Global Circulation Models (RRTMG) radiation scheme,
the hybrid eddy-diffusivity mass-flux (EDMF) planetary boundary layer (PBL) scheme based on the Smagorinsky K theory,
an orographic gravity wave drag (GWD) parameterization, and the Near SST (NSST) ocean scheme to predict SST.
In the GFS_v16beta suite, a moist TKE-based EDMF scheme replaces the K-based one and a non-stationary GWD parameterization is added.
The GFS_v15p2_no_nsst and the GFS_v16beta_no_nsst suites use a simple ocean scheme instead of the NSST scheme.
This simple ocean scheme keeps the SST constant throughout the forecast and is recommended for use when the initial
conditions do not contain all fields needed to initialize the NSST scheme.

Even when using physics suite GFS_v15p2, the UFS WM v1 differs from the operational GFS v15.2 in a few ways. First, the public release code
reflects the state of development as of the fall of 2019,
and therefore the parameterizations contain innovations beyond what is in GFSv15.2 operations.
For example, the GFDL microphysics distributed for use in GFS v15.2 and GFS v16beta
is the same scheme and contains development beyond what was transitioned to operations
for GFS v15 in June 2019. Second, the public release code uses the CCPP as the
interface for calling physics, while in operations the Interoperable Physics Driver
(IPD) is used. NOAA is currently working toward phasing out the IPD from UFS applications.
Validation tests demonstrated that CCPP and IPD give bit-for-bit identical results
when the same physics is employed and selected performance flags are excluded at
compilation time. When performance compiler flags employed in operational production are used, runs with
CCPP and IPD for the same physics suite yield differences comparable to running
the model in different computational platforms. Finally, the operational GFS
runs in NOAA Central Operations computational platforms. When users run the model
in different platforms, the results will differ.

It should also be noted that further changes are expected to the GFS v16 suite before it is implemented in operations in 2021.

The UFS WM v1 code is portable and can be used with Linux and Mac operating systems with Intel and GNU compilers. It has been tested in a variety of platforms widely used by atmospheric scientists, such as the NOAA research Hera system, the National Center for Atmospheric Research (NCAR) Cheyenne system, the National Science Foundation Stampede system, and Mac laptops.

Note

At this time, the following aspects are unsupported: standalone regional domains, configurations in which a mediator is used to couple the atmospheric model to models of other earth domains (such as ocean, ice, and waves), horizontal resolutions other than the supported ones, different number or placement of vertical levels, physics suites other than GFS v15.2 and GFS v16beta the cellular automata stochastic scheme, initialization from sources other than GFS, the use of different file formats for input and output, and the use of the model in different computational platforms. It is expected that the UFS WM supported capabilities will be expanded in future releases.

It should be noted that the UFS WM is a component of the UFS Medium-Range (MR) Weather Application (App), which also contains pre- and post-processing components, a comprehensive build system, and workflows for configuration and execution of the application. At this time, the UFS WM is only supported to the general community for use as part of the UFS MR Weather App. However, those wishing to contribute development to the UFS WM should become familiar with the procedures for running the model as a standalone component and for executing the regression tests described in this guide to make sure no inadvertent changes to the results have been introduced during the development process.

Support for the UFS WM is provided through the UFS Forum [https://forums.ufscommunity.org/forum/ufs-weather-model] by the Developmental Testbed Center (DTC) and other groups involved in UFS development, such as NOAA’s Environmental Modeling Center (EMC), NOAA research laboratories (GFDL, NSSL, ESRL, and AOML), and NCAR. UFS users and developers are encouraged not only to post questions, but also to help address questions posted by other members of the community.

This WM User’s Guide is organized as follows:

	Chapter 2 (Code Overview) provides a description of the various
code repositories from which source code is pulled and an overview of the directory structure.

	Chapter 3 (Building and Running the WM) explains how to use the WM without an application.

	Chapter 4 (Inputs and Outputs) lists the model inputs and outputs
and has a description of the key files.

	Chapter 5 (SDF and namelist samples and best practices)
contains a description of the Suite Definition File (SDF) and namelists needed to configure the model
for running with the GFS v15.2 and GFS v16beta physics suites.

	Chapter 6 (Contributing development) goes beyond the capabilities supported in the public release to cover code management for conducting development and proposing contributions back to the authoritative code repositories. It should be noted that the regression tests described here are mandatory for committing code back to the ufs-weather-model authoritative code repository. These regressions tests differ from those distributed with the workflows for UFS applications, which are intended for application users and developers to assess the quality of their installations and the impact of their code changes.

Finally, Chapters 7 and 8 contain a list of acronyms and a glossary, respectively.

2. Code Overview

2.1. UFS Weather Model Hierarchical Repository Structure

The ufs-weather-model repository supports the short- and medium-range UFS applications. It contains atmosphere and wave components and some infrastructure components. Each of these components has its own repository. All the repositories are currently located in GitHub with public access to the broad community. Table 2.1 describes the list of repositories that comprises the ufs-weather-model.

Table 2.1 List of Repositories that comprise the ufs-weather-model

	Repository Description

	Authoritative repository URL

	Umbrella repository for the UFS Weather Model

	https://github.com/ufs-community/ufs-weather-model

	Infrastructure: Flexible Modeling System

	https://github.com/NOAA-GFDL/FMS

	Infrastructure: NOAA Environmental Modeling System

	https://github.com/NOAA-EMC/NEMS

	Infrastructure: Utilities

	https://github.com/NOAA-EMC/NCEPLIBS-pyprodutil

	Framework to connect the CCPP library to a host model

	https://github.com/NCAR/ccpp-framework

	CCPP library of physical parameterizations

	https://github.com/NCAR/ccpp-physics

	Umbrella repository for the physics and dynamics of the atmospheric model

	https://github.com/NOAA-EMC/fv3atm

	FV3 dynamical core

	https://github.com/NOAA-EMC/GFDL_atmos_cubed_sphere

	Stochastic physics pattern generator

	https://github.com/noaa-psd/stochastic_physics

In the table, the left column contains a description of each repository, and the right column shows the component repositories which are pointing to (or will point to) the authoritative repositories. The ufs-weather-model currently uses git submodule to manage the sub-components.

The umbrella repository for the UFS Weather Model is named ufs-weather-model. Under this repository reside a number of submodules that are nested in specific directories under the parent repository’s working directory. When the ufs-weather-model repository is cloned, the .gitmodules file creates the following directories:

ufs-weather-model/
├── FMS https://github.com/NOAA-GFDL/FMS
├── FV3 https://github.com/NCAR/fv3atm
│ ├── atmos_cubed_sphere https://github.com/NCAR/GFDL_atmos_cubed_sphere
│ ├── ccpp
│ │ ├── framework https://github.com/NCAR/ccpp-framework
│ │ ├── physics https://github.com/NCAR/ccpp-physics
├── NEMS https://github.com/NCAR/NEMS
│ └── tests/produtil/NCEPLIBS-pyprodutil https://github.com/NOAA-EMC/NCEPLIBS-pyprodutil
├── stochastic_physics https://github.com/noaa-psd/stochastic_physics

2.2. Directory Structure

When the ufs-weather-model is cloned, the basic directory structure will be similar to the example below. Files and some directories have been removed for brevity.

ufs-weather-model/
├── cmake --------- cmake configuration files
├── compsets --------- configurations used by some regression tests
├── conf --------- compile options for Tier 1 and 2 platforms
├── doc --------- READMEs with build, reg-test hints
├── FMS --------- The Flexible Modeling System (FMS),a software framework
├── FV3 --------- FV3 atmosphere model
│ ├── atmos_cubed_sphere ---- FV3 dynamic core
│ │ ├── docs
│ │ ├── driver
│ │ ├── model
│ │ └── tools
│ ├── ccpp -------- Common Community Physics Package
│ │ ├── config
│ │ ├── driver
│ │ ├── framework -------- CCPP framework
│ │ ├── physics -------- CCPP compliant physics schemes
│ │ └── suites -------- CCPP physics suite definition files (SDFs)
│ ├── cpl -------- Coupling field data structures
│ ├── gfsphysics
│ │ ├── CCPP_layer
│ │ ├── GFS_layer
│ │ └── physics --------- unused - IPD version of physics codes
│ ├── io --------- FV3 write grid comp code
│ ├── ipd --------- unused - IPD driver/interfaces
| ├── stochastic_physics ----- Cmakefile for stochastic physics code
├── log --------- log files from NEMS compset regression tests
├── modulefiles --------- system module files for supported HPC systems
├── NEMS --------- NOAA Earth Modeling System framework
│ ├── exe
│ ├── src
│ └── test
├── parm --------- regression test configurations
├── stochastic_physics -------- stochastic physics pattern generator
├── tests --------- regression test scripts

The physics subdirectory in the gfsphysics directory is not used or supported
as part of this release (all physics is available through the CCPP using
the repository described in Table 2.1).

3. Building and Running the UFS Weather Model

3.1. Prerequisite Libraries

The UFS Weather Model requires a number of libraries for it to compile.
There are two categories of libraries that are needed:

	Bundled libraries (NCEPLIBS). These are libraries developed for use with NOAA weather models.
Most have an NCEPLIBS prefix in the repository, e.g. NCEPLIBS-bacio. Select tools from the UFS
Utilities repository (UFS-UTILS) are also included in this category. A list of the bundled
libraries tested with this WM release is in the top-level README of the NCEPLIBS repository [https://github.com/NOAA-EMC/NCEPLIBS/tree/ufs-v1.0.0] (be sure to look at the tag in that repository that
matches the tag on this WM release).

	Third-party libraries (NCEPLIBS-external). These are libraries that were developed external to
the UFS Weather Model. They are general software packages that are also used by other models in
the community. Building these is optional, since existing builds of these libraries can be pointed
to instead. A list of the external libraries tested with this WM release is in the top-level README
of the NCEPLIBS-external repository [https://github.com/NOAA-EMC/NCEPLIBS-external/tree/ufs-v1.0.0]. Again, be
sure to look at the tag in that repository that matches the tag on this WM release.

Note

The libraries in NCEPLIBS-external must be built before the libraries in NCEPLIBS.

See this wiki link [https://github.com/ufs-community/ufs/wiki/Supported-Platforms-and-Compilers] for
an explanation of which platforms and compilers are supported. This will help to determine if you need
to build NCEPLIBS and NCEPLIBS-external or are working on a system that is already pre-configured. On
pre-configured platforms, the libraries are already available.

If you do have to build the libraries, it is a good idea to check the platform- and compiler-specific
README files in the doc/ directory of the NCEPLIBS-external repository [https://github.com/NOAA-EMC/NCEPLIBS-external/tree/ufs-v1.0.0]
as a first step, to see if your system or one similar to it is included. These files have detailed
instructions for building NCEPLIBS-external, NCEPLIBS, and the UFS Weather Model. They may be all the
documentation you need. Be sure to use the tag that corresponds to this version of the WM, and define a
WORK directory path before you get started.

If your platform is not included in these platform- and compiler-specific README files, there is a more
generic set of instructions in the README file at the top level of the NCEPLIBS-external repository [https://github.com/NOAA-EMC/NCEPLIBS-external/tree/ufs-v1.0.0], and at the top level of the NCEPLIBS repository [https://github.com/NOAA-EMC/NCEPLIBS/tree/ufs-v1.0.0]. It may still be a good idea to look at some of the platform-
and compiler-specific README files as a guide. Again, be sure to use the tag that corresponds to this version of the WM.

The top-level README in the NCEPLIBS-external repository includes a troubleshooting section that may be helpful.

You can also get expert help through a user support forum [https://forums.ufscommunity.org/forum/build-dependencies]
set up specifically for issues related to build dependencies.

3.2. Downloading the Weather Model Code

To clone the ufs-weather-model repository for this v1.0.0 release, execute the following commands:

git clone https://github.com/ufs-community/ufs-weather-model.git ufs-weather-model
cd ufs-weather-model
git checkout ufs-v1.0.0
git submodule update --init --recursive

Compiling the model will take place within the ufs-weather-model directory you just created.

3.3. Building the Weather Model

3.3.1. Setting environment variables for paths to NCEPLIBS and NCEPLIBS-external

You will need to make sure that the WM has the paths to the libraries that it requires. In order to do
that, these environment variables need to be set, as shown in Table 3.1 and
Table 3.2 for the bash shell.

Table 3.1 Bundled libraries (NCEPLIBS) required for the Weather Model

	NCEP Library

	Environment Variables

	nemsio

	export NEMSIO_INC=<path_to_nemsio_include_dir>

	
	export NEMSIO_LIB=<path_to_nemsio_lib_dir>/libnemsio<version>.a

	bacio

	export BACIO_LIB4=<path_to_bacio_lib_dir>/libbacio<version>.a

	splib

	export SP_LIBd=<path_to_sp_lib_dir>/libsp<version>_d.a

	w3emc

	export W3EMC_LIBd=<path_to_w3emc_lib_dir>/libw3emc<version>_d.a

	w3nco

	export W3NCO_LIBd=<path_to_w3nco_lib_dir>/libw3nco<version>_d.a

Table 3.2 Third-party libraries (NCEPLIBS-external) required for the Weather Model

	Library

	Environment Variables

	NetCDF

	export NETCDF=<path_to_netcdf_install_dir>

	ESMF

	export ESMFMKFILE=<path_to_esmfmk_file>/esmf.mk

The following are a few different ways to set the required environment variables to the correct values.
If you are running on one of the pre-configured platforms [https://github.com/ufs-community/ufs/wiki/Supported-Platforms-and-Compilers], you can set them using
modulefiles. Modulefiles for all supported platforms are located in modulefiles/<platform>/fv3. To
load the modules, for example on hera, run:

cd modulefiles/hera.intel
module use $(pwd)
module load fv3
cd ../..

If you are not running on one of the pre-configured platforms, you will need to set the environment variables
in a different way.

If you used one of the platform- and compiler-specific README files in the doc/ directory of NCEPLIBS-external
to build the prerequisite libraries, there is a script in the NCEPLIBS-ufs-v1.0.0/bin directory called
setenv_nceplibs.sh that will set the NCEPLIBS-external variables for you.

Of course, you can also set the values of these variables yourself if you know where the paths are on your system.

3.3.2. Setting other environment variables

You will also need to set the CMAKE_Platform environment variable.
See the README files in the doc/ directories of the NCEPLIBS-external repository for recognized values.

The default value is:

export CMAKE_Platform=linux.<compiler>

Where <compiler> is either Intel or GNU. You may also wish to set the following environment variables:

	CMAKE_Platform: if not set the default is linux.${COMPILER}

	CMAKE_C_COMPILER: if not set the default is mpicc

	CMAKE_CXX_COMPILER: if not set the default is mpicxx

	CMAKE_Fortran_COMPILER: if not set the default is mpif90

In order to have one or more CCPP physics suites available at runtime, you need to select those suites at
build time by setting the CCPP_SUITES environment variable. Multiple suites can be set, as shown below
in an example for the bash shell:

export CCPP_SUITES=’FV3_GFS_v15p2,FV3_GFS_v16beta’

If CCPP_SUITES is not set, the default is ‘FV3_GFS_v15p2’.

3.3.3. Building the model

The UFS Weather Model uses the cmake build system. There is a build script called build.sh in the
top-level directory of the WM repository that ensures all necessary variables are actually set.

After setting all the environment variables, you can build the model by running the following from the ufs-weather-model directory:

./build.sh

Once build.sh is finished, you should see the executable, named ufs_weather_model, in the top-level directory.

Expert help is available through a user support forum [https://forums.ufscommunity.org/forum/ufs-weather-model]
set up specifically for issues related to the Weather Model.

3.4. Running the model

The UFS Weather Model wiki [https://github.com/ufs-community/ufs-weather-model/wiki] includes a simple
test case that illustrates how the model can be run.

4. Inputs and Outputs

This chapter describes the input and output files needed for executing the model in the various supported configurations.

4.1. Input files

There are three types of files needed to execute a run: static datasets (fix files containing climatological
information), files that depend on grid resolution and initial conditions, and model configuration files (such as namelists).

4.1.1. Static datasets (i.e., fix files)

The static input files are listed and described in Table 4.1.

Table 4.1 Fix files containing climatological information

	Filename

	Description

	aerosol.dat

	External aerosols data file

	CFSR.SEAICE.1982.2012.monthly.clim.grb

	CFS reanalysis of monthly sea ice climatology

	co2historicaldata_YYYY.txt

	Monthly CO2 in PPMV data for year YYYY

	global_albedo4.1x1.grb

	Four albedo fields for seasonal mean climatology: 2 for strong zenith angle dependent (visible and near IR)
and 2 for weak zenith angle dependent

	global_glacier.2x2.grb

	Glacier points, permanent/extreme features

	global_h2oprdlos.f77

	Coefficients for the parameterization of photochemical production and loss of water (H2O)

	global_maxice.2x2.grb

	Maximum ice extent, permanent/extreme features

	global_mxsnoalb.uariz.t126.384.190.rg.grb

	Climatological maximum snow albedo

	global_o3prdlos.f77

	Monthly mean ozone coefficients

	global_shdmax.0.144x0.144.grb

	Climatological maximum vegetation cover

	global_shdmin.0.144x0.144.grb

	Climatological minimum vegetation cover

	global_slope.1x1.grb

	Climatological slope type

	global_snoclim.1.875.grb

	Climatological snow depth

	global_snowfree_albedo.bosu.t126.384.190.rg.grb

	Climatological snowfree albedo

	global_soilmgldas.t126.384.190.grb

	Climatological soil moisture

	global_soiltype.statsgo.t126.384.190.rg.grb

	Soil type from the STATSGO dataset

	global_tg3clim.2.6x1.5.grb

	Climatological deep soil temperature

	global_vegfrac.0.144.decpercent.grb

	Climatological vegetation fraction

	global_vegtype.igbp.t126.384.190.rg.grb

	Climatological vegetation type

	global_zorclim.1x1.grb

	Climatological surface roughness

	RTGSST.1982.2012.monthly.clim.grb

	Monthly, climatological, real-time global sea surface temperature

	seaice_newland.grb

	High resolution land mask

	sfc_emissivity_idx.txt

	External surface emissivity data table

	solarconstant_noaa_an.txt

	External solar constant data table

4.1.2. Grid description and initial condition files

The input files containing grid information and the initial conditions are listed and described in Table 4.2.

Table 4.2 Input files containing grid information and initial conditions

	Filename

	Description

	Date-dependent

	C96_grid.tile[1-6].nc

	C96 grid information for tiles 1-6

	

	gfs_ctrl.nc

	NCEP NGGPS tracers, ak, and bk

	✔

	gfs_data.tile[1-6].nc

	Initial condition fields (ps, u, v, u, z, t, q, O3). May include spfo3, spfo, spf02 if multiple gases are used

	✔

	oro_data.tile[1-6].nc

	Model terrain (topographic/orographic information) for grid tiles 1-6

	

	sfc_ctrl.nc

	Control parameters for surface input: forecast hour, date, number of soil levels

	

	sfc_data.tile[1-6].nc

	Surface properties for grid tiles 1-6

	✔

4.1.3. Model configuration files

The configuration files used by the UFS Weather Model are listed here and described below:

	diag_table

	field_table

	input.nml

	model_configure

	nems.configure

	suite_[suite_name].xml (used only at build time)

4.1.3.1. diag_table file

There are three sections in file diag_table: Header (Global), File, and Field. These are described below.

Header Description

The Header section must reside in the first two lines of the diag_table file and contain the title and date
of the experiment (see example below). The title must be a Fortran character string. The base date is the
reference time used for the time units, and must be greater than or equal to the model start time. The base date
consists of six space-separated integers in the following format: year month day hour minute second. Here is an example:

20161003.00Z.C96.64bit.non-mono
2016 10 03 00 0 0

File Description

The File Description lines are used to specify the name of the file(s) to which the output will be written. They
contain one or more sets of six required and five optional fields (optional fields are denoted by square brackets
[]). The lines containing File Descriptions can be intermixed with the lines containing Field Descriptions as
long as files are defined before fields that are to be written them. File entries have the following format:

"file_name", output_freq, "output_freq_units", file_format, "time_axis_units", "time_axis_name"
[, new_file_freq, "new_file_freq_units"[, "start_time"[, file_duration, "file_duration_units"]]]

These file line entries are described in Table 4.3.

Table 4.3 Description of the six required and five optional fields used to define output file sampling rates.

	File Entry

	Variable Type

	Description

	file_name

	CHARACTER(len=128)

	Output file name without the trailing “.nc”

	output_freq

	INTEGER

	
The period between records in the file_name:

> 0 output frequency in output_freq_units.

= 0 output frequency every time step (output_freq_units is ignored)

=-1 output at end of run only (output_freq_units is ignored)

	output_freq_units

	CHARACTER(len=10)

	The units in which output_freq is given. Valid values are “years”, “months”, “days”, “minutes”, “hours”, or “seconds”.

	file_format

	INTEGER

	Currently only the netCDF file format is supported. = 1 netCDF

	time_axis_units

	CHARACTER(len=10)

	The units to use for the time-axis in the file. Valid values are “years”, “months”, “days”, “minutes”, “hours”,
or “seconds”.

	time_axis_name

	CHARACTER(len=128)

	Axis name for the output file time axis. The character string must contain the string ‘time’.
(mixed upper and lowercase allowed.)

	new_file_freq

	INTEGER, OPTIONAL

	Frequency for closing the existing file, and creating a new file in new_file_freq_units.

	new_file_freq_units

	CHARACTER(len=10), OPTIONAL

	Time units for creating a new file: either years, months, days, minutes, hours, or seconds.
NOTE: If the new_file_freq field is present, then this field must also be present.

	start_time

	CHARACTER(len=25), OPTIONAL

	Time to start the file for the first time. The format of this string is the same as the global date.
NOTE: The new_file_freq and the new_file_freq_units fields must be present to use this field.

	file_duration

	INTEGER, OPTIONAL

	How long file should receive data after start time in file_duration_units. This optional field can only be
used if the start_time field is present. If this field is absent, then the file duration will be equal to the
frequency for creating new files. NOTE: The file_duration_units field must also be present if this field is present.

	file_duration_units

	CHARACTER(len=10), OPTIONAL

	File duration units. Can be either years, months, days, minutes, hours, or seconds. NOTE: If the file_duration field
is present, then this field must also be present.

Field Description

The field section of the diag_table specifies the fields to be output at run time. Only fields registered
with register_diag_field(), which is an API in the FMS diag_manager routine, can be used in the diag_table.

Registration of diagnostic fields is done using the following syntax

diag_id = register_diag_field(module_name, diag_name, axes, ...)

in file FV3/atmos_cubed_sphere/tools/fv_diagnostics.F90. As an example, the sea level pressure is registered as:

id_slp = register_diag_field (trim(field), 'slp', axes(1:2), & Time, 'sea-level pressure', 'mb', missing_value=missing_value, range=slprange)

All data written out by diag_manager is controlled via the diag_table. A line in the field section of the
diag_table file contains eight variables with the following format:

"module_name", "field_name", "output_name", "file_name", "time_sampling", "reduction_method", "regional_section", packing

These field section entries are described in Table 4.4.

Table 4.4 Description of the eight variables used to define the fields written to the output files.

	Field Entry

	Variable Type

	Description

	module_name

	CHARACTER(len=128)

	Module that contains the field_name variable. (e.g. dynamic, gfs_phys, gfs_sfc)

	field_name

	CHARACTER(len=128)

	The name of the variable as registered in the model.

	output_name

	CHARACTER(len=128)

	Name of the field as written in file_name.

	file_name

	CHARACTER(len=128)

	Name of the file where the field is to be written.

	time_sampling

	CHARACTER(len=50)

	Currently not used. Please use the string “all”.

	reduction_method

	CHARACTER(len=50)

	The data reduction method to perform prior to writing data to disk. Current supported option is .false.. See FMS/diag_manager/diag_table.F90 for more information.

	regional_section

	CHARACTER(len=50)

	Bounds of the regional section to capture. Current supported option is “none”. See FMS/diag_manager/diag_table.F90 for more information.

	packing

	INTEGER

	Fortran number KIND of the data written. Valid values: 1=double precision, 2=float, 4=packed 16-bit integers, 8=packed 1-byte (not tested).

Comments can be added to the diag_table using the hash symbol (#).

A brief example of the diag_table is shown below. “...” denote where lines have been removed.

 20161003.00Z.C96.64bit.non-mono
 2016 10 03 00 0 0

 "grid_spec", -1, "months", 1, "days", "time"
 "atmos_4xdaily", 6, "hours", 1, "days", "time"
 "atmos_static" -1, "hours", 1, "hours", "time"
 "fv3_history", 0, "hours", 1, "hours", "time"
 "fv3_history2d", 0, "hours", 1, "hours", "time"

 #
 #=======================
 # ATMOSPHERE DIAGNOSTICS
 #=======================
 ###
 # grid_spec
 ###
 "dynamics", "grid_lon", "grid_lon", "grid_spec", "all", .false., "none", 2,
 "dynamics", "grid_lat", "grid_lat", "grid_spec", "all", .false., "none", 2,
 "dynamics", "grid_lont", "grid_lont", "grid_spec", "all", .false., "none", 2,
 "dynamics", "grid_latt", "grid_latt", "grid_spec", "all", .false., "none", 2,
 "dynamics", "area", "area", "grid_spec", "all", .false., "none", 2,
 ###
 # 4x daily output
 ###
 "dynamics", "slp", "slp", "atmos_4xdaily", "all", .false., "none", 2
 "dynamics", "vort850", "vort850", "atmos_4xdaily", "all", .false., "none", 2
 "dynamics", "vort200", "vort200", "atmos_4xdaily", "all", .false., "none", 2
 "dynamics", "us", "us", "atmos_4xdaily", "all", .false., "none", 2
 "dynamics", "u1000", "u1000", "atmos_4xdaily", "all", .false., "none", 2
 "dynamics", "u850", "u850", "atmos_4xdaily", "all", .false., "none", 2
 "dynamics", "u700", "u700", "atmos_4xdaily", "all", .false., "none", 2
 "dynamics", "u500", "u500", "atmos_4xdaily", "all", .false., "none", 2
 "dynamics", "u200", "u200", "atmos_4xdaily", "all", .false., "none", 2
 "dynamics", "u100", "u100", "atmos_4xdaily", "all", .false., "none", 2
 "dynamics", "u50", "u50", "atmos_4xdaily", "all", .false., "none", 2
 "dynamics", "u10", "u10", "atmos_4xdaily", "all", .false., "none", 2

 ...
 ###
 # gfs static data
 ###
 "dynamics", "pk", "pk", "atmos_static", "all", .false., "none", 2
 "dynamics", "bk", "bk", "atmos_static", "all", .false., "none", 2
 "dynamics", "hyam", "hyam", "atmos_static", "all", .false., "none", 2
 "dynamics", "hybm", "hybm", "atmos_static", "all", .false., "none", 2
 "dynamics", "zsurf", "zsurf", "atmos_static", "all", .false., "none", 2
 ###
 # FV3 variables needed for NGGPS evaluation
 ###
 "gfs_dyn", "ucomp", "ugrd", "fv3_history", "all", .false., "none", 2
 "gfs_dyn", "vcomp", "vgrd", "fv3_history", "all", .false., "none", 2
 "gfs_dyn", "sphum", "spfh", "fv3_history", "all", .false., "none", 2
 "gfs_dyn", "temp", "tmp", "fv3_history", "all", .false., "none", 2
 ...
 "gfs_phys", "ALBDO_ave", "albdo_ave", "fv3_history2d", "all", .false., "none", 2
 "gfs_phys", "cnvprcp_ave", "cprat_ave", "fv3_history2d", "all", .false., "none", 2
 "gfs_phys", "cnvprcpb_ave", "cpratb_ave","fv3_history2d", "all", .false., "none", 2
 "gfs_phys", "totprcp_ave", "prate_ave", "fv3_history2d", "all", .false., "none", 2
 ...
 "gfs_sfc", "crain", "crain", "fv3_history2d", "all", .false., "none", 2
 "gfs_sfc", "tprcp", "tprcp", "fv3_history2d", "all", .false., "none", 2
 "gfs_sfc", "hgtsfc", "orog", "fv3_history2d", "all", .false., "none", 2
 "gfs_sfc", "weasd", "weasd", "fv3_history2d", "all", .false., "none", 2
 "gfs_sfc", "f10m", "f10m", "fv3_history2d", "all", .false., "none", 2
...

More information on the content of this file can be found in FMS/diag_manager/diag_table.F90.

Note

None of the lines in the diag_table can span multiple lines.

4.1.3.2. field_table file

The FMS field and tracer managers are used to manage tracers and specify tracer options. All tracers
advected by the model must be registered in an ASCII table called field_table. The field table consists
of entries in the following format:

	The first line of an entry should consist of three quoted strings:
	
	The first quoted string will tell the field manager what type of field it is. The string “TRACER” is used to
declare a field entry.

	The second quoted string will tell the field manager which model the field is being applied to. The supported
type at present is “atmos_mod” for the atmosphere model.

	The third quoted string should be a unique tracer name that the model will recognize.

The second and following lines are called methods. These lines can consist of two or three quoted strings.
The first string will be an identifier that the querying module will ask for. The second string will be a name
that the querying module can use to set up values for the module. The third string, if present, can supply
parameters to the calling module that can be parsed and used to further modify values.

An entry is ended with a forward slash (/) as the final character in a row. Comments can be inserted in the field table by having a hash symbol (#) as the first character in the line.

Below is an example of a field table entry for the tracer called “sphum”:

added by FRE: sphum must be present in atmos
specific humidity for moist runs
 "TRACER", "atmos_mod", "sphum"
 "longname", "specific humidity"
 "units", "kg/kg"
 "profile_type", "fixed", "surface_value=3.e-6" /

In this case, methods applied to this tracer include setting the long name to “specific humidity”, the units
to “kg/kg”. Finally a field named “profile_type” will be given a child field called “fixed”, and that field
will be given a field called “surface_value” with a real value of 3.E-6. The “profile_type” options are listed
in Table 4.5. If the profile type is “fixed” then the tracer field values are set equal
to the surface value. If the profile type is “profile” then the top/bottom of model and surface values are read
and an exponential profile is calculated, with the profile being dependent on the number of levels in the component model.

Table 4.5 Tracer profile setup from FMS/tracer_manager/tracer_manager.F90.

	Method Type

	Method Name

	Method Control

	profile_type

	fixed

	surface_value = X

	profile_type

	profile

	surface_value = X, top_value = Y (atmosphere)

For the case of

"profile_type","profile","surface_value = 1e-12, top_value = 1e-15"

in a 15 layer model this would return values of surf_value = 1e-12 and multiplier = 0.6309573, i.e 1e-15 = 1e-12*(0.6309573^15).

A method is a way to allow a component module to alter the parameters it needs for various tracers. In essence,
this is a way to modify a default value. A namelist can supply default parameters for all tracers and a method, as
supplied through the field table, will allow the user to modify the default parameters on an individual tracer basis.
The lines in this file can be coded quite flexibly. Due to this flexibility, a number of restrictions are required.
See FMS/field_manager/field_manager.F90 for more information.

4.1.3.3. input.nml file

The atmosphere model reads many parameters from a Fortran namelist file, named input.nml. This file contains
several Fortran namelist records, some of which are always required, others of which are only used when selected
physics options are chosen.

The following link describes the various physics-related namelist records:

https://dtcenter.org/GMTB/v4.0/sci_doc/CCPPsuite_nml_desp.html

The following link describes the stochastic physics namelist records

https://stochastic-physics.readthedocs.io/en/ufs-v1.0.0/namelist_options.html

The following link describes some of the other namelist records (dynamics, grid, etc):

https://www.gfdl.noaa.gov/wp-content/uploads/2017/09/fv3_namelist_Feb2017.pdf

The namelist section relating to the FMS diagnostic manager is described in the last section of this chapter.

4.1.3.4. model_configure file

This file contains settings and configurations for the NUOPC/ESMF main component, including the simulation
start time, the processor layout/configuration, and the I/O selections. Table 4.6
shows the following parameters that can be set in model_configure at run-time.

Table 4.6 Parameters that can be set in model_configure at run-time.

	Parameter

	Meaning

	Type

	Default Value

	print_esmf

	flag for ESMF PET files

	logical

	.true.

	PE_MEMBER01

	total number of tasks for ensemble number 1

	integer

	150 (for c96 with quilt)

	start_year

	start year of model integration

	integer

	2019

	start_month

	start month of model integration

	integer

	09

	start_day

	start day of model integration

	integer

	12

	start_hour

	start hour of model integration

	integer

	00

	start_minute

	start minute of model integration

	integer

	0

	start_second

	start second of model integration

	integer

	0

	nhours_fcst

	total forecast length

	integer

	48

	dt_atmos

	atmosphere time step in second

	integer

	1800 (for C96)

	output_1st_tstep_rst

	output first time step history file after restart

	logical

	.false.

	memuse_verbose

	flag for printing out memory usage

	logical

	.false.

	atmos_nthreads

	number of threads for atmosphere

	integer

	4

	restart_interval

	frequency to output restart file

	integer

	0 (write restart file at the end of integration)

	quilting

	flag to turn on quilt

	logical

	.true.

	write_groups

	total number of groups

	integer

	2

	write_tasks_per_group

	total number of write tasks in each write group

	integer

	6

	output_history

	flag to output history files

	logical

	.true.

	num_files

	number of output files

	integer

	2

	filename_base

	file name base for the output files

	character(255)

	‘atm’ ‘sfc’

	output_grid

	output grid

	character(255)

	gaussian_grid

	output_file

	output file format

	character(255)

	nemsio

	imo

	i-dimension for output grid

	integer

	384

	jmo

	j-dimension for output grid

	integer

	190

	nfhout

	history file output frequency

	integer

	3

	nfhmax_hf

	forecast length of high history file

	integer

	0 (0:no high frequency output)

	nfhout_hf

	high history file output frequency

	integer

	1

	nsout

	output frequency of number of time step

	integer

	-1 (negative: turn off the option, 1: output history file at every time step)

Table 4.7 shows the following parameters in model_configure that
are not usually changed.

Table 4.7 Parameters that are not usually changed in model_configure at run-time.

	Parameter

	Meaning

	Type

	Default Value

	total_member

	total number of ensemble member

	integer

	1

	RUN_CONTINUE

	Flag for more than one NEMS run

	logical

	.false.

	ENS_SPS

	flag for the ensemble stochastic coupling flag

	logical

	.false.

	calendar

	type of calendar year

	character(*)

	‘gregorian’

	fhrot

	forecast hour at restart for nems/earth grid component clock in coupled model

	integer

	0

	cpl

	flag for coupling with MOM6/CICE5

	logical

	.false.

	write_dopost

	flag to do post on write grid component

	logical

	.false.

	ideflate

	lossless compression level

	integer

	1 (0:no compression, range 1-9)

	nbits

	lossy compression level

	integer

	14 (0: lossless, range 1-32)

	write_nemsioflip

	flag to flip the vertical level for nemsio file

	logical

	.true.

	write_fsyncflag

	flag to check if a file is synced to disk

	logical

	.true.

	iau_offset

	IAU offset lengdth

	integer

	0

4.1.3.5. nems.configure file

This file contains information about the various NEMS components and their run sequence. In the current release,
this is an atmosphere-only model, so this file is simple and does not need to be changed. A sample of the file contents is below:

EARTH_component_list: ATM
ATM_model: fv3
runSeq::
 ATM
::

4.1.3.6. The SDF (Suite Definition File) file

There are two SDFs currently supported: suite_FV3_GFS_v15p2.xml and suite_FV3_GFS_v16beta.xml.

4.2. Output files

The following files are output when running fv3.exe in the default configuration (six files of each kind,
corresponding to the six tiles of the model grid):

	atmos_4xdaily.tile[1-6].nc

	atmos_static.tile[1-6].nc

	sfcfHHH.nc

	atmfHHH.nc

	grid_spec.tile[1-6].nc

Note that the sfcf* and atmf* files are not output on the 6 tiles, but instead as a single global gaussian grid file. The specifications of the output files (type, projection, etc) may be overridden in the model_configure input file.

Standard output files are logf???, and out and err as specified by the job submission. ESMF may also produce log
files (controlled by variable print_esmf in the model_configure file), called PET???.ESMF_LogFile.

4.3. Additional Information about the FMS Diagnostic Manager

The UFS Weather Model output is managed through the FMS (Flexible Modeling System) diagnostic manager (FMS/diag_manager)
and is configured using the diag_table file. Data can be written at any number of sampling and/or averaging intervals
specified at run-time. More information about the FMS diagnostic manager can be found at:
https://data1.gfdl.noaa.gov/summer-school/Lectures/July16/03_Seth1_DiagManager.pdf

4.3.1. Diagnostic Manager namelist

The diag_manager_nml namelist contains values to control the behavior of the diagnostic manager. Some
of the more common namelist options are described in Table 4.8. See
FMS/diag_manager/diag_manager.F90 for the complete list.

Table 4.8 Namelist variables used to control the behavior of the diagnostic manager.

	Namelist variable

	Type

	Description

	Default value

	max_files

	INTEGER

	Maximum number of files allowed in diag_table

	31

	max_output_fields

	INTEGER

	Maximum number of output fields allowed in diag_table

	300

	max_input_fields

	INTEGER

	Maximum number of registered fields allowed

	300

	prepend_date

	LOGICAL

	Prepend the file start date to the output file. .TRUE. is only supported if the diag_manager_init routine is called with the optional time_init parameter.

	.TRUE.

	do_diag_field_log

	LOGICAL

	Write out all registered fields to a log file

	.FALSE.

	use_cmor

	LOGICAL

	Override the missing_value to the CMOR value of -1.0e20

	.FALSE.

	issue_oor_warnings

	LOGICAL

	Issue a warning if a value passed to diag_manager is outside the given range

	.TRUE.

	oor_warnings_fatal

	LOGICAL

	Treat out-of-range errors as FATAL

	.FALSE.

	debug_diag_manager

	LOGICAL

	Check if the diag table is set up correctly

	.FALSE.

This release of the UFS Weather Model uses the following namelist:

&diag_manager_nml
 prepend_date = .false.
/

5. SDF and Namelist Samples and Best Practices

The public release of the UFS MR Weather App includes four supported physics suites:
GFS_v15p2, GFS_v15p2_no_nsst, GFS_v16beta, and GFS_v16beta_no_nsst. You will
find the Suite Definition Files (SDFs) for these suites in

https://github.com/NOAA-EMC/fv3atm/tree/ufs-v1.0.0/ccpp/suites

(no other SDFs are available with this release). You will find the namelists for the C96 configuration here:

https://github.com/ufs-community/ufs-weather-model/tree/ufs-v1.0.0/parm/ccpp_v15p2_c96.nml.IN

and

https://github.com/ufs-community/ufs-weather-model/tree/ufs-v1.0.0/parm/ccpp_v16beta_c96.nml.IN

As noted in the file names, these namelists are for the operational (v15p2) and developmental (v16beta)
GFS suites. Each of these namelists are relevant to the suites with and without the SST prediction scheme, that is,
they are relevant for the suite that employs NSST and for the suite that employs the simple ocean
model (no_nsst). The only difference in the namelist regarding how SST prediction is
addressed is variable nstf_name. For more information about this variable and for information about
namelist options for higher resolution configurations, please consult the
CCPP v4 Scientific Documentation [https://dtcenter.org/GMTB/v4.0/sci_doc/].

The four CCPP suites for the UFS MR Weather App release are supported in four grid resolutions:
C96, C192, C384, and C768, with 64 vertical levels.

An in depth description of the namelist settings, SDFs, and parameterizations used
in all supported suites can be found in the CCPP v4 Scientific Documentation [https://dtcenter.org/GMTB/v4.0/sci_doc/].
Note both suites do not
use stochastic physics by default, but the stochastic physics can be activated following the
instructions described in the stochastic physics v1 user’s guide [https://stochastic-physics.readthedocs.io/en/ufs-v1.0.0].

Both the SDF and the input.nml contain information about how to specify the physics suite.
Some of this information is redundant, and the user must make sure they are compatible. The
safest practice is to use the SDF and namelist provided for each suite, since those are
supported configurations.

Changes to the SDF must be accompanied by corresponding changes to the namelist. While there
is not a one-to-one correspondence between the namelist and the SDF, Table 5.1
shows some variables in the namelist that must match the SDF.

Table 5.1 Variables related to PBL options

	Namelist option

	Meaning

	Possible Values

	Default

	Used with CCPP scheme

	Recommentation

	
	PBL-related variables

	
	
	
	

	do_myjpbl

	Flag to activate the MYJ PBL scheme

	T

	F

	mypbl_wrapper

	Set to F for GFSv15p2* and GFSv16beta*

	do_myjsfc

	Flag to activate the MYJ PBL surface layer scheme

	T, F

	F

	myjsfc_wrapper

	Set to F for GFSv15p2* and GFSv16beta*

	do_mynnedmf

	Flag to activate the MYNN-EDMF scheme

	T, F

	F

	mynnedmf_wrapper

	Set to F for GFSv15p2* and GFSv16beta*

	do_ysu

	Flag to activate the YSU PBL scheme

	T, F

	F

	ysudif

	Set to F for GFSv15p2* and GFSv16beta*

	hybedmf

	Flag to activate the K-based PBL scheme

	T, F

	F

	hedmf

	Set to T for GFSv15p2* and GFSv16beta*

	isatedmf

	Flag for version of scale-aware TKE-based EDMF scheme

	0, 1

	0

	0=satmedmfvdif, 1=satmedmfvdifq

	Set to 0 for GFSv15p2* and 1 for GFSv16beta*

	ism

	Flag to choose a land surface model to use

	0, 1, 2

	1

	1=lsm_noah, 2=lsm_ruc

	Set to 1 for GFSv15p2* and GFSv16beta*

	satedmf

	Flag to activate the scale-aware TKE-based EDMF scheme

	T, F

	F

	satmedmfvdif or satmedmfvdifq

	Set to T for GFSv15p2* and GFSv16beta*

	shinhong

	Flag to activate the Shin-Hong PBL parameterization

	T, F

	F

	shinhongdif

	Set to F for GFSv15p2* and GFSv16beta*

	
	Convection-releated flags

	
	
	
	

	cscnv

	Flag to activate the Chikira-Sugiyama deep convection scheme

	T, F

	F

	cs_conv

	Set to F for GFSv15p2* and GFSv16beta*

	do_aw

	Flag to activate the Arakawa-Wu extension to the Chikira-Sugiyama deep convection scheme

	T, F

	F

	cs_conv_aw_adj

	Set to F for GFSv15p2* and GFSv16beta*

	imfdeepcnv

	Flag to choose a mass flux deep convective scheme

	-1, 2, 3, 4

	-1

	-1=no deep convection*, 2=samfshalcnv, 3=cu_gf_driver, 4=cu_ntiedtke

	Set to 2 for GFSv15p2* and GFSv16beta*

	imfshalcvn

	Flag to choose a mass flux shallow convective scheme

	-1, 2, 3, 4

	-1

	-1=no deep convection*, 2=samfshalcnv, 3=cu_gf_driver, 4=cu_ntiedtke

	Set to 2 for GFSv15p2* and GFSv16beta*

*Even when imfdeepcvn=-1, the Chikira-Sugiyama deep convection scheme may be specified using cscnv=T.

Other miscellaneous changes to the SDF that must be accompanied by corresponding changes in
the namelist are listed in Table 5.2.

Table 5.2 Miscellaneous namelist variables and their relation to the SDF

	Namelist option

	Meaning

	Possible Values

	Default

	Used with CCPP scheme

	Recommendation

	
	Miscellaneous variables

	
	
	
	

	do_myjsfc

	Flag to activate the MYJ PBL surface scheme

	T, F

	F

	mynnsfc_wrapper

	Set to F for GFSv15p2* and GFSv16beta*

	do_shoc

	Flag to activate the Simplified Higher-Order Closure (SHOC) parameterization

	T, F

	F

	shoc

	Set to F for GFSv15p2* and GFSv16beta*

	do_ugwp**

	Flag to activate the unified Gravity Wave Physics parameterization

	T, F

	F

	cires_ugwp

	Set to F for GFSv15p2* and GFSv16beta*

	imp_physics

	Flag to choose a microphysics scheme

	8, 10, 11

	99

	8=mp_thompson, 10=m_micro, 11=gfdl_cloud_microphysics

	Set to 11 for GFSv15p2* and GFSv16beta*

	lsm

	Flag to choose a land surface model to use

	0, 1, 2

	1

	1=lsm_noah, 2=lsm_ruc

	Set to 1 for GFSv15p2* and GFSv16beta*

	lsoil

	Number of soil layers

	4, 9

	4

	4 for lsm_noah, 9 for lsm_ruc

	Set to 4 for GFSv15p2* and GFSv16beta*

	h2o_phys

	Flag for stratosphere h2o scheme

	T, F

	
	h2ophys

	Set to T for GFSv15p2* and GFSv16beta*

	oz_phys_2015

	Flag for new (2015) ozone physics

	T, F

	
	ozphys_2015

	Set to T for GFSv15p2* and GFSv16beta*

**The CIRES Unified Gravity Wave Physics (cires_ugwp) scheme is used in GFSv15p2* and GFSv16beta* SDFs with do_ugwp=F in the namelist. In this setting, the cires_ugwp calls the operational GFS v15.2 orographic gravity wave drag (gwdps) scheme. When do_ugwp=T, the cires_ugwp scheme calls an experimental orographic gravity wave (gwdps_v0).

Note that some namelist variables are not available for use with CCPP.

	do_deep. In order to disable deep convection, it is necessary to remove the deep convection scheme from the SDF.

	shal_cnv. In order to disable shallow convection, it is necessary to remove the deep convection scheme from the SDF.

	ldiag3d and ldiag_ugwp. Must be F for CCPP runs.

	gwd_opt. Ignored in CCPP-supported suites.

When certain parameterizations are turned on, additional namelist options can be used (they are ignored otherwise).
Some examples are shown in Table 5.3.

Table 5.3 Enabled namelist variables

	Namelist setting

	Enabled namelist variables

	do_ugwp=T

	All variables in namelist record &cires_ugwp_nml plus do_tofd. Additionally, if namelist variable cnvgwd=T and
the third and fourth position of namelist array cdmbgwd are both 1, then the convective gravity wave drag that
is part of cires_ugwp will be called. (Not supported with the UFS)

	do_mynnedmf=T

	bl_mynn_tkeadvect, bl_mynn_edmf, bl_mynn_edmf_mom (Not supported with the UFS)

	imp_physics=99

	psautco and prautco (Not supported with the UFS)

	imp_physics=10

	mg_* (Not supported with UFS)

	imp_physics=11

	All variables in namelist record gfdl_cloud_microphysics_nml and lgfdlmprad

	satedmf=T

	isatedmf

6. Contributing Development

The ufs-weather-model repository contains the model code and external links needed to build the Unified Forecast System (UFS) atmosphere model and associated components, including the WaveWatch III model. This weather model is used in several of the UFS applications, including the medium-range weather application, the short-range weather application, and the sub-seasonal to seasonal application.

6.1. Making code changes using a forking workflow

If developers would like to make code changes, they need to make a personal fork, set up upstream remote (for merging with the original ufs-weather-model), and create a branch for ufs-weather-model and each of the subcomponent repositories they want to change. They can then make code changes, perform testing and commit the changes to the branch in their personal fork. It is suggested that they update their branch by merging the develop branch with the develop branch of the original repositories periodically to get the latest updates and bug fixes.

If developers would like to get their code committed back to the original repository, it is suggested to follow the steps below:

	Create an issue in the authoritative repository. For example to commit code changes to fv3atm, please go to https://github.com/NOAA-EMC/fv3atm, under NOAA-EMC/fv3atm and find the “Issues” tab next to the “Code” tab. Click on “Issues” and a new page will appear. On the right side of the page, there is a green “New issue” button. Clicking on that will lead to a new issue page. Fill out the title, comments to describe the code changes, and also please provide personal fork and branch information. Lastly, click on the “Submit new issue” button, so that the new issue is created.

	When the development is mature, tests have been conducted, and the developer is satisfied with the results, create a pull request to commit the code changes.

	Merge developer’s branch to the latest ufs-weather-model develop branch in authoritative repository. If changes are made in model sub-components, developers need to merge their branches to branches with the corresponding authoritative repository (or original repository for some components). For this, code management practices of the subcomponents need to be followed.

	Regression tests associated with the ufs-weather-model are available on Tier 1 and Tier 2 platforms as described in https://github.com/ufs-community/ufs-weather-model/wiki/Regression-Test-Policy-for-Weather-Model-Platforms-and-Compilers. If the developer has access to these platforms, the developer should pass the regression test on at least one supported platform. If the developer does not have access to these platforms, this should be stated in the PR so the code manager(s) can conduct the tests.

	For each component branch where developers make changes, developers need to go to their personal fork on GitHub and click on the “New pull request” button. When a new page “Compare changes” appears, developers will choose the branch in their fork with code changes to commit and the branch in upstream repository that the changes will be committed to. Also developers in the commit comment must add the github issue title and number created in 1) in the comment box. The code differences between the two branches will be displayed. Developers can review the differences and click on “submit pull request” to make the pull request. After code changes are committed to the component repository, developers will make pull requests to ufs-weather-model repository.

	When PRs are created, the creator must temporarily modify .gitmodules to point to his/her fork and branch if updates are required for submodules.

	Merging code from PRs with submodules requires coordination with the person making the PRs. From the “innermost” nested PR up to the top-level PR, the PRs need to be merged as-is. After each merge, the person creating the PRs has to update his/her local code to check out the merged version, revert the change to .gitmodules, and push this to GitHub to update the PR. And so on and so forth.

	Checking out the code ufs_release_1.0 should always be as follows:

git clone https://github.com/ufs-community/ufs-weather-model
cd ufs-weather-model
git checkout ufs_release_1.00
git submodule update --init --recursive

	Checking out a PR with id ID for testing it should always be as follows:

git clone https://github.com/ufs-community/ufs-weather-model
cd ufs-weather-model
git fetch origin pull/ID/head:BRANCHNAME
git checkout BRANCHNAME
git submodule update --init --recursive

It is suggested that the developers inform all the related code managers as the hierarchy structure of the ufs-weather-model repository may require collaboration among the code managers.

6.2. Engaging in the code review process

When code managers receive a pull request to commit the code changes, it is recommended that they add at least two code reviewers to review the code and at least one of the reviewers has write permission. The reviewers will write comments about the code changes and give a recommendation as to whether the code changes can be committed. What kinds of code changes will be accepted in the repository is beyond the scope of this document; future ufs-weather-model code management documents may have a detailed answer for that.

Reviewers may suggest some code changes during the review process. Developers need to respond to these comments in order to get code changes committed. If developers make further changes to their branch, reviewers need to check the code changes again. When both reviewers give recommendation to commit the code, code managers will merge the changes into the repository.

6.3. Conducting regression tests

Only developers using Tier 1 and 2 platforms can run the ufs-weather-model regression tests. Other developers need to work with the code managers to assure completion of the regression tests.

To run regression test using rt.sh

rt.sh is a bash shell file to run the RT and has the following options:

Usage: ./rt.sh -c | -f | -s | -l <file> | -m | -k | -r | -e | -h
-c create new baseline results for <model>
-f run full suite of regression tests
-s run standard suite of regression tests
-l run test specified in <file>
-m compare against new baseline results
-k keep run directory (automatically deleted otherwise if all tests pass)
-r use Rocoto workflow manager
-e use ecFlow workflow manager
-h display this help

% cd ufs-weather-model/tests
% ./rt.sh -f

This command can only be used on platforms that have been configured for regression testing (Tier 1 and Tier 2 platforms as described in https://github.com/ufs-community/ufs-weather-model/wiki/Regression-Test-Policy-for-Weather-Model-Platforms-and-Compilers). For information on testing the CCPP code, or using alternate computational platforms, see the following sections.

This command and all others below produce log output in ./tests/log_machine.compiler. These log files contain information on the location of the run directories that can be used as templates for the user. Each rt*.conf contains one or more compile commands preceding a number of tests.

Regression test log files (ufs-weather-model/tests/Compile_$(MACHINE_ID).log and ufs-weather-model/tests/RegressionTests_$(MACHINE_ID).log) will be updated.

If developers wish to contribute code that changes the results of the regression tests (because of updates to the physics, for example), it is useful to run rt.sh as described above to make sure that the test failures are as expected. It is then useful to establish a new personal baseline:

./rt.sh -l rt.conf -c # create own reg. test baseline

Once the personal baseline has been created, future runs of the RT should be compared against the personal baseline using the -m option.

./rt.sh -l rt.conf -m # compare against own baseline

To create new baseline:

% cd ufs-weather-model/tests
% ./rt.sh -f -c

An alternative/complementary regression test system is using NEMSCompsetRun, which focuses more on coupled model configurations than testing features of the standalone ufs-weather-model. To run regression test using NEMSCompsetRun:

% cd ufs-weather-model
% ./NEMS/NEMSCompsetRun -f

Regression test log files (ufs-weather-model/log/$MACHINE_ID/*) will be updated.

To create new baseline:

% cd ufs-weather-model
% ./NEMS/NEMSCompsetRun --baseline fv3 --platform=${PLATFORM}

The value of ${PLATFORM} can be found in ufs-weather-model/compsets/platforms.input.

Developers need to commit the regression test log files to their branch before making pull request.

7. Acronyms

	Acronyms

	Explanation

	AOML

	NOAA’s Atlantic Oceanographic and Meteorological
Laboratory

	API

	Application Programming Interface

	b4b

	Bit-for-bit

	CCPP

	Common Community Physics Package

	dycore

	Dynamical core

	EDMF

	Eddy-Diffusivity Mass Flux

	EMC

	Environmental Modeling Center

	ESMF

	The Earth System Modeling Framework

	ESRL

	NOAA Earth System Research Laboratories

	FMS

	Flexible Modeling System

	FV3

	Finite-Volume Cubed Sphere

	GFDL

	NOAA Geophysical Fluid Dynamics Laboratory

	GFS

	Global Forecast System

	GSD

	Global Systems Division

	HTML

	Hypertext Markup Language

	LSM

	Land Surface Model

	MPI

	Message Passing Interface

	NCAR

	National Center for Atmospheric Research

	NCEP

	National Centers for Environmental Predicction

	NEMS

	NOAA Environmental Modeling System

	NOAA

	National Oceanic and Atmospheric Administration

	NSSL

	National Severe Storms Laboratory

	PBL

	Planetary Boundary Layer

	PR

	Pull request

	RRTMG

	Rapid Radiative Transfer Model for Global
Circulation Models

	RT

	Regression test

	SAS

	Simplified Arakawa-Schubert

	SDF

	Suite Definition File

	sfc

	Surface

	SHUM

	Perturbed boundary layer specific humidity

	SKEB

	Stochastic Kinetic Energy Backscatter

	SPPT

	Stochastically Perturbed Physics Tendencies

	TKE

	Turbulent Kinetic Energy

	UFS

	Unified Forecast System

	WM

	Weather Model

8. Glossary

	CCPP
	Model agnostic, vetted, collection of codes containing atmospheric physical parameterizations
and suites for use in NWP along with a framework that connects the physics to host models

	CCPP-Framework
	The infrastructure that connects physics schemes with a host model; also refers to a software
repository of the same name

	CCPP-Physics
	The pool of CCPP-compliant physics schemes; also refers to a software repository of the same name

	FMS
	The Flexible Modeling System (FMS) is a software framework for supporting the efficient
development, construction, execution, and scientific interpretation of atmospheric,
oceanic, and climate system models.

	NEMS
	The NOAA Environmental Modeling System - a software infrastructure that supports
NCEP/EMC’s forecast products.

	NUOPC
	The National Unified Operational Prediction Capability is a consortium of Navy, NOAA,
and Air Force modelers and their research partners. It aims to advance the weather
modeling systems used by meteorologists, mission planners, and decision makers. NUOPC
partners are working toward a common model architecture - a standard way of building
models - in order to make it easier to collaboratively build modeling systems.

	Parameterization or physics scheme
	The representation, in a dynamic model, of physical effects in terms of admittedly
oversimplified parameters, rather than realistically requiring such effects to be
consequences of the dynamics of the system (AMS Glossary)

	Suite Definition File (SDF)
	An external file containing information about the
construction of a physics suite. It describes the schemes that are called, in which
order they are called, whether they are subcycled, and whether they are assembled
into groups to be called together

	Suite
	A collection of primary physics schemes and interstitial schemes that are known to work
well together

	UFS
	A Unified Forecast System (UFS) is a community-based, coupled comprehensive Earth
system modeling system. The UFS numerical applications span local to global domains
and predictive time scales from sub-hourly analyses to seasonal predictions. It is
designed to support the Weather Enterprise and to be the source system for NOAA’s
operational numerical weather prediction applications

	Weather Model
	A prognostic model that can be used for short- and medium-range research and
operational forecasts. It can be an atmosphere-only model or be an atmospheric
model coupled with one or more additional components, such as a wave or ocean model.

Index

 C
 | F
 | N
 | P
 | S
 | U
 | W

C

 	
 	CCPP

 	
 	CCPP-Framework

 	CCPP-Physics

F

 	
 	FMS

N

 	
 	NEMS

 	
 	NUOPC

P

 	
 	Parameterization or physics scheme

S

 	
 	Suite

 	
 	Suite Definition File (SDF)

U

 	
 	UFS

W

 	
 	Weather Model

 nav.xhtml

 Table of Contents

 		
 Welcome to the UFS Weather Model User’s Guide

 		
 Introduction

 		
 Code Overview

 		
 UFS Weather Model Hierarchical Repository Structure

 		
 Directory Structure

 		
 Building and Running the UFS Weather Model

 		
 Prerequisite Libraries

 		
 Downloading the Weather Model Code

 		
 Building the Weather Model

 		
 Setting environment variables for paths to NCEPLIBS and NCEPLIBS-external

 		
 Setting other environment variables

 		
 Building the model

 		
 Running the model

 		
 Inputs and Outputs

 		
 Input files

 		
 Static datasets (i.e., fix files)

 		
 Grid description and initial condition files

 		
 Model configuration files

 		
 Output files

 		
 Additional Information about the FMS Diagnostic Manager

 		
 Diagnostic Manager namelist

 		
 SDF and Namelist Samples and Best Practices

 		
 Contributing Development

 		
 Making code changes using a forking workflow

 		
 Engaging in the code review process

 		
 Conducting regression tests

 		
 Acronyms

 		
 Glossary

_static/file.png

_static/minus.png

_static/plus.png

