
UFS Weather Model Users Guide

May 16, 2024

CONTENTS

1 Introduction 1

2 Technical Overview 3
2.1 Supported Platforms and Compilers for Running the UFS Weather Model 3

2.1.1 Level 1 Systems . 3
2.1.2 Level 2-4 Systems . 4

2.2 UFS Weather Model Hierarchical Repository Structure . 4
2.3 Directory Structure . 5

3 Building and Running the UFS Weather Model 7
3.1 Supported Platforms & Compilers . 7
3.2 Prerequisite Libraries . 7

3.2.1 Common Modules . 7
3.3 Get Data . 8
3.4 Downloading the Weather Model Code . 10
3.5 Building the Weather Model . 11

3.5.1 Loading the Required Modules . 11
3.5.2 Setting the CMAKE_FLAGS and CCPP_SUITES Environment Variables 11
3.5.3 Building the Model . 14

3.6 Running the Model . 14
3.6.1 Using the Regression Test Script . 14
3.6.2 Using the Operational Requirement Test Script . 17

4 Data: Input, Model Configuration, and Output Files 21
4.1 Input files . 22

4.1.1 ATM . 22
4.1.2 MOM6 . 23
4.1.3 HYCOM . 25
4.1.4 CICE6 . 26
4.1.5 WW3 . 27
4.1.6 CDEPS . 29
4.1.7 GOCART . 31
4.1.8 AQM (CMAQ) . 32
4.1.9 LND . 32

4.2 Model configuration files . 34
4.2.1 diag_table file . 35
4.2.2 field_table file . 39
4.2.3 model_configure file . 40
4.2.4 ufs.configure file . 41
4.2.5 The Suite Definition File (SDF) File . 42

i

4.2.6 datm.streams . 43
4.2.7 datm_in . 44
4.2.8 blkdat.input . 44
4.2.9 Namelist file input.nml . 45

4.3 Output files . 49
4.3.1 FV3Atm . 49
4.3.2 MOM6 . 50
4.3.3 HYCOM . 51
4.3.4 CICE6 . 52
4.3.5 WW3 . 52
4.3.6 CMEPS . 52

4.4 Additional Information about the FMS Diagnostic Manager . 52
4.4.1 Diagnostic Manager Namelist . 53

4.5 Additional Information about the Write Component . 53

5 Configurations 55
5.1 Background . 55
5.2 Atmospheric Model Configurations . 57

5.2.1 ATM - Standalone Atmospheric Model . 57
5.2.2 ATMW . 58
5.2.3 ATMAERO . 60
5.2.4 ATMAQ . 62
5.2.5 ATML . 62

5.3 Rapid Refresh Forecast System (RRFS) . 62
5.4 LND . 66
5.5 Seasonal to Subseasonal (S2S) Configurations . 67
5.6 NG-GODAS . 67
5.7 Hurricane Analysis and Reforecast System Configurations . 67

6 Configuration Parameters 71
6.1 Build Configuration Parameters . 71

6.1.1 Configuration Options . 71
6.1.2 Physics Options . 71
6.1.3 Other Build Options . 73

7 Automated Testing 75
7.1 CI/CD . 75
7.2 Auto RT . 76

7.2.1 AutoRT Workflow . 76

8 FAQ 77
8.1 How do I build and run a single test of the UFS Weather Model? . 77
8.2 How do I change the length of the model run? . 78
8.3 How do I set the output history interval? . 78
8.4 How do I turn off IO for the components of the coupled model? . 79

8.4.1 FV3atm restart and history files . 79
8.4.2 MOM6, CICE6 and CMEPS restart files . 79
8.4.3 MOM6 history files . 79
8.4.4 CICE history files . 80
8.4.5 GOCART history files . 80
8.4.6 WW3 history and restart files . 80

8.5 How do I set the total number of tasks for my job? . 80
8.5.1 FV3atm . 80
8.5.2 GOCART . 81
8.5.3 CMEPS . 81

ii

8.5.4 MOM6 . 82
8.5.5 CICE . 82
8.5.6 WW3 . 82
8.5.7 Example: 5-component ufs.configure . 83

9 Acronyms 87

10 Glossary 89

Bibliography 95

Index 97

iii

iv

CHAPTER

ONE

INTRODUCTION

The Unified Forecast System (UFS) Weather Model (WM) is a prognostic model that can be used for short- and medium-
range research and operational forecasts, as exemplified by its use in the operational Global Forecast System (GFS) of
the National Oceanic and Atmospheric Administration (NOAA). In addition to its use in NOAA’s operational forecast
systems, the UFS WM is the atmospheric model used in public UFS application releases, such as the Short-Range
Weather (SRW) Application v2.2.0 release. These releases represent a snapshot of a continuously evolving system
undergoing open development. More information about the UFS can be found on the UFS Community Portal at https:
//ufscommunity.org/ and on the Earth Prediction Innovation Center (EPIC) website at https://epic.noaa.gov/get-code/
ufs-weather-model/.

Key architectural elements of the UFS WM, along with links to external detailed documentation for those elements,
are listed below:

• The Finite-Volume Cubed-Sphere (FV3) dynamical core is the computational part of an atmospheric model that
solves the equations of fluid motion.

• The Flexible Modeling System (FMS), is a software framework for supporting the efficient development, con-
struction, execution, and scientific interpretation of atmospheric, oceanic, and climate system models. It is used
for functions such as parallelization.

• The Common-Community Physics Package (CCPP), provides a framework and library of physics schemes, or
parameterizations, that support interoperable atmospheric physics. Atmospheric physics is a set of numerical
methods approximating the effects of small-scale processes such as clouds, turbulence, radiation, and their inter-
actions.

• Stochastic physics schemes apply randomized perturbations to the physical tendencies, or physical parameters, of
a model in order to compensate for model uncertainty. They include the Stochastic Kinetic Backscatter Scheme
(SKEBS), the Stochastically Perturbed Parameterization Tendencies (SPPT) scheme, the perturbed boundary
layer humidity (SHUM) scheme, the Stochastically Perturbed Parameterizations (SPP) scheme, Land Surface
Model SPP (LSM-SPP), and the cellular automata method (Bengtsson et al. [BDT+20]).

• The libraries needed to build the system, which are bundled together via spack-stack and include:

– National Centers for Environmental Prediction (NCEP) Libraries

– Earth System Modeling Framework (ESMF)

– External libraries

• The build system used to compile the code and generate the executable.

• The regression tests used to maintain software integrity as innovations are added.

The UFS Weather Model is currently included in two UFS Application releases: The UFS Short-Range Weather (SRW)
Application v2.2.0 release (October 2023) and the UFS Medium Range Weather Application (MRW) v1.1.0 release
(October 2020). These UFS Apps also contain pre- and post-processing components, a comprehensive build system,
and workflows for configuration and execution of the application. The SRW App v2.2.0 documentation and details can
be found here. The MRW App v1.1.0 documentation and details can be found here.

1

https://ufscommunity.org/
https://ufscommunity.org/
https://epic.noaa.gov/get-code/ufs-weather-model/
https://epic.noaa.gov/get-code/ufs-weather-model/
https://noaa-emc.github.io/FV3_Dycore_ufs-v2.0.0/html/index.html
https://www.gfdl.noaa.gov/fms/
https://dtcenter.org/community-code/common-community-physics-package-ccpp
https://stochastic-physics.readthedocs.io/en/latest/
https://spack-stack.readthedocs.io/en/latest/
https://github.com/NOAA-EMC/NCEPLIBS/wiki
https://earthsystemmodeling.org/
https://github.com/NOAA-EMC/NCEPLIBS-external/wiki
https://ufs-srweather-app.readthedocs.io/en/release-public-v2.2.0/
https://ufs-mrweather-app.readthedocs.io/en/ufs-v1.1.0

UFS Weather Model Users Guide

The UFS WM code is portable and can be used with Linux or Mac operating systems and with Intel or GNU compilers.
It has been tested on a variety of platforms widely used by atmospheric scientists, such as the NOAA Research Hera
system, the National Center for Atmospheric Research (NCAR) Derecho system, the National Science Foundation
Stampede system, and Mac laptops.

Note: At this time, the following aspects are unsupported: configurations in which a mediator is used to couple the
atmospheric model to models of other earth domains (such as ocean, ice, and waves), horizontal resolutions other than
the supported ones, different number or placement of vertical levels, the cellular automata stochastic scheme, and
the use of different file formats for input and output. It is expected that the UFS WM supported capabilities will be
expanded in future releases.

Those wishing to contribute development to the UFS WM should become familiar with the procedures for running
the model as a standalone component and for executing the regression tests described in the UFS WM GitHub wiki to
make sure no inadvertent changes to the results have been introduced during the development process.

Support for the UFS WM is provided through the UFS Forum by the Developmental Testbed Center (DTC) and other
groups involved in UFS development, such as NOAA’s Environmental Modeling Center (EMC), NOAA research lab-
oratories (GFDL, NSSL, ESRL, and AOML), and NCAR. UFS users and developers are encouraged not only to post
questions, but also to help address questions posted by other members of the community.

This WM User’s Guide is organized as follows:

• Chapter 2 (Code Overview) provides a description of the various code repositories from which source code is
pulled and an overview of the directory structure.

• Chapter 3 (Building and Running the WM) explains how to use the WM without an application.

• Chapter 4 (Data: Input, Model Configuration, and Output Files) lists the model inputs and outputs and has a
description of the key files.

• Chapter 5 (Configurations) lists the currently supported configurations for the UFS WM.

• Chapter 6 (Configuration Parameters) lists the purpose and valid values for various configuration parameters.

• Chapter 7 (Automated Testing) describes UFS WM automated testing options.

• Chapter 8 (FAQ) lists frequently asked questions and answers.

Finally, Chapters 9 and 10 contain a list of acronyms and a glossary, respectively.

2 Chapter 1. Introduction

https://github.com/ufs-community/ufs-weather-model/wiki/Making-code-changes-in-the-UFS-weather-model-and-its-subcomponents
https://github.com/ufs-community/ufs-weather-model/discussions

CHAPTER

TWO

TECHNICAL OVERVIEW

2.1 Supported Platforms and Compilers for Running the UFS Weather
Model

Four levels of support have been defined for UFS applications, and the UFS Weather Model (WM) operates under this
paradigm:

• Level 1 (Preconfigured): Prerequisite software libraries are pre-built and available in a central location; code
builds and runs; full testing of model.

• Level 2 (Configurable): Prerequisite libraries are not available in a centralized location but are expected to install
successfully; code builds and runs; full testing of model.

• Level 3 (Limited-test platforms): Libraries and code build on these systems, but there is limited testing with
running the model.

• Level 4 (Build-only platforms): Libraries and code build, but running the model is not tested.

2.1.1 Level 1 Systems

Preconfigured (Level 1) systems for the UFS WM already have the required external libraries available in a central
location via spack-stack. The WM is expected to build and run out-of-the-box on these systems, and users can download
the WM code without first installing prerequisite software. Additionally, regression test data is already available on
these systems. In general, users must have access to these Level 1 systems in order to use them.

Currently, Level 1 (or Tier-1) platforms for regression testing are:

• WCOSS2 (Intel)

• Gaea (Intel)

• Hera (Intel/GNU compilers)

• Jet (Intel)

• Orion (Intel)

• Hercules (Intel/GNU compilers)

• AWS Docker container (Intel)

More information is available in the UFS WM wiki.

3

https://github.com/ufs-community/ufs-weather-model/wiki/Regression-Test-Policy-for-Weather-Model-Platforms-and-Compilers

UFS Weather Model Users Guide

2.1.2 Level 2-4 Systems

On non-Level 1 platforms, users must install the required libraries before building the UFS WM. Additionally, users
must stage the required data in order to run regression tests. Once the prerequisite libraries are installed, and the data has
been staged, the WM should build and run successfully. However, users may need to perform additional troubleshooting
on Level 3 or 4 systems since little or no testing is conducted on these systems.

Currently, Level 2 platforms for regression testing are:

• S4 (Intel)

2.2 UFS Weather Model Hierarchical Repository Structure

The UFS WM repository supports the UFS short- and medium-range weather applications (SRW / MRW Apps). The
WM repository contains atmosphere, ocean, sea ice, land, and wave components, as well as some infrastructure com-
ponents. Each of these subcomponents has its own repository. All the repositories are currently located in GitHub with
public access to the broader community. Table 2.1 describes the list of repositories that comprise the UFS WM.

Table 2.1: List of Repositories that comprise the ufs-weather-model

Repository Description Authoritative repository URL
Umbrella repository for the UFS Weather Model https://github.com/ufs-community/ufs-weather-model
Framework to connect the CCPP library to a host model https://github.com/NCAR/ccpp-framework
CCPP library of physical parameterizations https://github.com/NCAR/ccpp-physics
Umbrella repository for the physics and dynamics of the
atmospheric model (FV3)

https://github.com/NOAA-EMC/fv3atm

FV3 dynamical core https://github.com/NOAA-GFDL/GFDL_atmos_
cubed_sphere

Stochastic physics pattern generator https://github.com/NOAA-PSL/stochastic_physics
Modular Ocean Model (MOM6) https://github.com/NOAA-EMC/MOM6
HYbrid Coordinate Ocean Model (HYCOM) https://github.com/NOAA-EMC/HYCOM-src
Los Alamos sea ice model (CICE6) https://github.com/NOAA-EMC/CICE
NOAA/NCEP WAVEWATCH III Model (WW3) https://github.com/NOAA-EMC/WW3
The Goddard Chemistry Aerosol Radiation and Trans-
port (GOCART)

https://github.com/GEOS-ESM/GOCART

NUOPC Community Mediator for Earth Prediction Sys-
tems (CMEPS)

https://github.com/NOAA-EMC/CMEPS

Community Data Models for Earth Prediction Systems
(CDEPS)

https://github.com/NOAA-EMC/CDEPS

Air Quality Model (AQM) https://github.com/NOAA-EMC/AQM
Noah-MP Land Surface Model (Noah-MP) https://github.com/NOAA-EMC/noahmp

In the table, the left-hand column contains a description of each repository, and the right-hand column shows the GitHub
location of the authoritative component repositories. The UFS WM currently uses Git submodules to manage these
subcomponents.

4 Chapter 2. Technical Overview

https://github.com/ufs-community/ufs-weather-model
https://github.com/NCAR/ccpp-framework
https://github.com/NCAR/ccpp-physics
https://github.com/NOAA-EMC/fv3atm
https://github.com/NOAA-GFDL/GFDL_atmos_cubed_sphere
https://github.com/NOAA-GFDL/GFDL_atmos_cubed_sphere
https://github.com/NOAA-PSL/stochastic_physics
https://github.com/NOAA-EMC/MOM6
https://github.com/NOAA-EMC/HYCOM-src
https://github.com/NOAA-EMC/CICE
https://github.com/NOAA-EMC/WW3
https://github.com/GEOS-ESM/GOCART
https://github.com/NOAA-EMC/CMEPS
https://github.com/NOAA-EMC/CDEPS
https://github.com/NOAA-EMC/AQM
https://github.com/NOAA-EMC/noahmp

UFS Weather Model Users Guide

2.3 Directory Structure

The umbrella repository for the UFS WM is named ufs-weather-model. Under this repository reside a num-
ber of submodules that are nested in specific directories under the parent repository’s working directory. When the
ufs-weather-model repository is cloned, the basic directory structure will be similar to the example below. Files
and some directories have been removed for brevity. Directories in parentheses will appear only after a recursive clone
or submodule update (git submodule update --init --recursive).

ufs-weather-model
AQM

(src)
(model)

(CMAQ) -------- EPA Air Quality Model
build.sh -------- script for building the WM
CDEPS-interface

CDEPS
(datm) -------- CDEPS DATM
(docn) -------- CDEPS DOCN

CICE-interface
CICE -------- CICE6 sea ice model

(icepack) -------- Sea ice column physics
(cicecore/drivers/nuopc/cmeps) -------- NUOPC CICE6 cap

cmake -------- cmake configuration files
CMakeLists.txt
CMakeModules
CMEPS-interface

CMEPS
(cesm) -------- CMEPS CESM

doc -------- User Guide files
driver
FV3 -------- UFSAtm atmosphere model

(atmos_cubed_sphere) -------- FV3 dynamical core
(docs)
(driver)
(model)
(tools)

(ccpp) -------- Common Community Physics Package
(config)
(driver)
(framework) -------- CCPP framework
(physics) -------- CCPP-compliant physics schemes
(suites) -------- CCPP physics suite definition␣

→˓files (SDFs)
(cpl) -------- Coupling field data structures
(io) -------- UFSAtm write grid comp code
(stochastic_physics) -------- Wrapper for stochastic physics

GOCART
(ESMF) -------- GOCART model

HYCOM-interface
HYCOM -------- HYCOM ocean model

(NUOPC) -------- NUOPC HYCOM cap
LICENSE.md
modulefiles -------- system module files for supported␣

(continues on next page)

2.3. Directory Structure 5

UFS Weather Model Users Guide

(continued from previous page)

→˓HPC systems
MOM6-interface

MOM6
(src) -------- MOM6 ocean model
(config_source/drivers/nuopc_cap) -------- NUOPC MOM6 cap

NOAHMP-interface
noahmp

(cmake) -------- Noah-MP land model
(drivers/nuopc) -------- NUOPC Noah-MP cap
(parameters)
(src)

README.md
stochastic_physics -------- stochastic physics pattern␣

→˓generator
tests -------- regression test infrastructure

parm
tests
fv3_conf

WW3
(model) -------- WW3 model

(src) -------- NUOPC WW3 caps

6 Chapter 2. Technical Overview

CHAPTER

THREE

BUILDING AND RUNNING THE UFS WEATHER MODEL

3.1 Supported Platforms & Compilers

Before running the Weather Model (WM), users should determine which of the levels of support is applicable to their
system. Generally, Level 1 & 2 systems are restricted to those with access through NOAA and its affiliates. These
systems are named (e.g., Hera, Orion, Derecho). Level 3 & 4 systems include certain personal computers or non-
NOAA-affiliated HPC systems. The prerequisite software libraries for building the WM already exist in a centralized
location on Level 1/preconfigured systems, so users may skip directly to getting the data and downloading the code.
On other systems, users will need to build the prerequisite libraries using spack-stack or HPC-Stack.

3.2 Prerequisite Libraries

The UFS WM requires a number of libraries. The WM uses two categories of libraries, which are available as a bundle
via spack-stack or HPC-Stack:

1. NCEP libraries (NCEPLIBS): These are libraries developed for use with NOAA weather models. Most have
an NCEPLIBS prefix in the repository (e.g., NCEPLIBS-bacio). Select tools from the UFS Utilities repository
(UFS_UTILS) are also included in this category.

2. Third-party libraries (NCEPLIBS-external): These are libraries that were developed externally to the UFS
Weather Model. They are general software packages that are also used by other community models. Build-
ing these libraries is optional if users can point to existing builds of these libraries on their system instead.

Note: Currently, spack-stack is the software stack validated by the UFS WM for running regression tests. Spack-stack
is a Spack-based method for installing UFS prerequisite software libraries. UFS applications and components are also
shifting to spack-stack from HPC-Stack but are at various stages of this transition. Although users can still build and
use HPC-Stack, the UFS WM no longer uses HPC-Stack for validation, and support for this option is being deprecated.

3.2.1 Common Modules

As of May 19, 2023, the UFS WM Regression Tests (RTs) on Level 1 systems use the following common modules:

bacio/2.4.1
crtm/2.4.0
esmf/8.3.0b09
fms/2022.04
g2/3.4.5

(continues on next page)

7

UFS Weather Model Users Guide

(continued from previous page)

g2tmpl/1.10.2
gftl-shared/v1.5.0
hdf5/1.10.6
ip/3.3.3
jasper/2.0.25
libpng/1.6.37
mapl/2.22.0-esmf-8.3.0b09
netcdf/4.7.4
pio/2.5.7
sp/2.3.3
w3emc/2.9.2
zlib/1.2.11

The most updated list of common modules can be viewed in ufs_common.lua here.

Attention: Documentation is available for installing spack-stack and HPC-Stack, respectively. One of these soft-
ware stacks (or the libraries they contain) must be installed before running the UFS Weather Model.

3.3 Get Data

The WM RTs require input files to run. These include static datasets, files that depend on grid resolution and ini-
tial/boundary conditions, and model configuration files. On Level 1 and 2 systems, the data required to run the WM
RTs are already available in the following locations:

Table 3.1: Data Locations for Level 1 & 2 Systems

Machine File location
Derecho /glade/derecho/scratch/epicufsrt/ufs-weather-model/RT
Gaea /lustre/f2/pdata/ncep_shared/emc.nemspara/RT
Hera /scratch1/NCEPDEV/nems/emc.nemspara/RT
Jet /mnt/lfs4/HFIP/hfv3gfs/role.epic/RT
Orion /work/noaa/nems/emc.nemspara/RT
S4 /data/prod/emc.nemspara/RT
WCOSS2 /lfs/h2/emc/nems/noscrub/emc.nems/RT

For Level 3-4 systems, the data must be added to the user’s system. Publicly available RT data is available in the UFS
WM Data Bucket. Data for running RTs off of the develop branch is available for the most recent 60 days. To view the
data, users can visit https://noaa-ufs-regtests-pds.s3.amazonaws.com/index.html. To download data, users must select
the data they want from the bucket and either download it in their browser or via a wget command. For example, to
get the data for control_p8 (specifically the May 17, 2023 develop branch version of the WM), run:

wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓atmf000.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓atmf021.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓atmf024.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/

(continues on next page)

8 Chapter 3. Building and Running the UFS Weather Model

https://github.com/ufs-community/ufs-weather-model/blob/develop/modulefiles/ufs_common.lua
https://spack-stack.readthedocs.io/en/latest/
https://hpc-stack.readthedocs.io/en/latest/
https://registry.opendata.aws/noaa-ufs-regtests/
https://registry.opendata.aws/noaa-ufs-regtests/
https://noaa-ufs-regtests-pds.s3.amazonaws.com/index.html

UFS Weather Model Users Guide

(continued from previous page)

→˓GFSFLX.GrbF00
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓GFSFLX.GrbF21
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓GFSFLX.GrbF24
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓GFSPRS.GrbF00
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓GFSPRS.GrbF21
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓GFSPRS.GrbF24
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓sfcf000.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓sfcf021.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓sfcf024.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.coupler.res
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.fv_core.res.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.fv_core.res.tile1.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.fv_core.res.tile2.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.fv_core.res.tile3.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.fv_core.res.tile4.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.fv_core.res.tile5.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.fv_core.res.tile6.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.fv_srf_wnd.res.tile1.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.fv_srf_wnd.res.tile2.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.fv_srf_wnd.res.tile3.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.fv_srf_wnd.res.tile4.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.fv_srf_wnd.res.tile5.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.fv_srf_wnd.res.tile6.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.fv_tracer.res.tile1.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.fv_tracer.res.tile2.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.fv_tracer.res.tile3.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/

(continues on next page)

3.3. Get Data 9

UFS Weather Model Users Guide

(continued from previous page)

→˓RESTART/20210323.060000.fv_tracer.res.tile4.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.fv_tracer.res.tile5.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.fv_tracer.res.tile6.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.phy_data.tile1.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.phy_data.tile2.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.phy_data.tile3.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.phy_data.tile4.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.phy_data.tile5.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.phy_data.tile6.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.sfc_data.tile1.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.sfc_data.tile2.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.sfc_data.tile3.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.sfc_data.tile4.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.sfc_data.tile5.nc
wget https://noaa-ufs-regtests-pds.s3.amazonaws.com/develop-20230517/INTEL/control_p8/
→˓RESTART/20210323.060000.sfc_data.tile6.nc

Detailed information on input files can be found in Chapter 4.

3.4 Downloading the Weather Model Code

To clone the develop branch of the ufs-weather-model repository and update its submodules, execute the following
commands:

git clone --recursive https://github.com/ufs-community/ufs-weather-model.git ufs-weather-
→˓model
cd ufs-weather-model

Compiling the model will take place within the ufs-weather-model directory created by this command.

10 Chapter 3. Building and Running the UFS Weather Model

UFS Weather Model Users Guide

3.5 Building the Weather Model

3.5.1 Loading the Required Modules

The process for loading modules is fairly straightforward on NOAA Level 1 Systems. Users may need to make adjust-
ments when running on other systems.

On NOAA Level 1 & 2 Systems

Modulefiles for preconfigured platforms are located in modulefiles/ufs_<platform>.<compiler>. For example,
to load the modules from the ufs-weather-model directory on Hera:

module use modulefiles
module load ufs_hera.intel

Note that loading this module file will also set the CMake environment variables shown in Table 3.2.

Table 3.2: CMake environment variables required to configure the build
for the Weather Model

EnvironmentVariable Description Hera Intel Value
CMAKE_C_COMPILER Name of C compiler mpiicc
CMAKE_CXX_COMPILER Name of C++ compiler mpiicpc
CMAKE_Fortran_COMPILER Name of Fortran compiler mpiifort
CMAKE_Platform String containing platform and compiler name hera.intel

On Other Systems

If you are not running on one of the pre-configured platforms, you will need to set the environment variables manually.
For example, in a bash shell, a command in the following form will set the C compiler environment variable:

export CMAKE_C_COMPILER=</path/to/C/compiler>

3.5.2 Setting the CMAKE_FLAGS and CCPP_SUITES Environment Variables

The UFS Weather Model can be built in one of several configurations (see Table 4.1 for common options). The
CMAKE_FLAGS environment variable specifies which configuration to build using the -DAPP and -DCCPP_SUITES vari-
ables. Users set which components to build using -DAPP. Users select the CCPP suite(s) by setting the CCPP_SUITES
environment variable at build time in order to have one or more CCPP physics suites available at runtime. Multi-
ple suites can be set. Additional variables, such as -D32BIT=ON, can be set if the user chooses. These options are
documented in Section 6.1.3. The following examples assume a bash shell.

3.5. Building the Weather Model 11

UFS Weather Model Users Guide

ATM Configurations

Standalone ATM

For the ufs-weather-model ATM configuration (standalone ATM):

export CMAKE_FLAGS="-DAPP=ATM -DCCPP_SUITES=FV3_GFS_v16"

ATMW

For the ufs-weather-model ATMW configuration (standalone ATM coupled to WW3):

export CMAKE_FLAGS="-DAPP=ATMW -DCCPP_SUITES=FV3_GFS_v16"

ATMAERO

For the ufs-weather-model ATMAERO configuration (standalone ATM coupled to GOCART):

export CMAKE_FLAGS="-DAPP=ATMAERO -DCCPP_SUITES=FV3_GFS_v17_p8"

ATMAQ

For the ufs-weather-model ATMAQ configuration (standalone ATM coupled to CMAQ):

export CMAKE_FLAGS="-DAPP=ATMAQ -DCCPP_SUITES=FV3_GFS_v15p2"

ATML

For the ufs-weather-model ATML configuration (standalone ATM coupled to LND):

export CMAKE_FLAGS="-DAPP=ATML -DCCPP_SUITES=FV3_GFS_v17_p8"

S2S Configurations

S2S

For the ufs-weather-model S2S configuration (coupled atm/ice/ocean):

export CMAKE_FLAGS="-DAPP=S2S -DCCPP_SUITES=FV3_GFS_v17_coupled_p8"

To turn on debugging flags, add -DDEBUG=ON flag after -DAPP=S2S. Users can allow verbose build messages by run-
ning:

export BUILD_VERBOSE=1

To receive atmosphere-ocean fluxes from the CMEPS mediator, add the argument -DCMEPS_AOFLUX=ON. For example:

export CMAKE_FLAGS="-DAPP=S2S -DCCPP_SUITES=FV3_GFS_v17_coupled_p8_sfcocn -DCMEPS_
→˓AOFLUX=ON"

S2SA

For the ufs-weather-model S2SA configuration (atm/ice/ocean/aerosols):

export CMAKE_FLAGS="-DAPP=S2SA -DCCPP_SUITES=FV3_GFS_2017_coupled,FV3_GFS_v15p2_coupled,
→˓FV3_GFS_v16_coupled,FV3_GFS_v16_coupled_noahmp"

12 Chapter 3. Building and Running the UFS Weather Model

UFS Weather Model Users Guide

S2SW

For the ufs-weather-model S2SW configuration (atm/ice/ocean/wave):

export CMAKE_FLAGS="-DAPP=S2SW -DCCPP_SUITES=FV3_GFS_v17_coupled_p8"

S2SWA

For the ufs-weather-model S2SWA configuration (atm/ice/ocean/wave/aerosols):

export CMAKE_FLAGS="-DAPP=S2SWA -DCCPP_SUITES=FV3_GFS_v17_coupled_p8,FV3_GFS_cpld_
→˓rasmgshocnsstnoahmp_ugwp"

NG-GODAS Configuration

For the ufs-weather-model NG-GODAS configuration (atm/ocean/ice/data assimilation):

export CMAKE_FLAGS="-DAPP=NG-GODAS"

HAFS Configurations

HAFS

For the ufs-weather-model HAFS configuration (atm/ocean) in 32 bit:

export CMAKE_FLAGS="-DAPP=HAFS -D32BIT=ON -DCCPP_SUITES=FV3_HAFS_v0_gfdlmp_tedmf_nonsst,
→˓FV3_HAFS_v0_gfdlmp_tedmf"

HAFSW

For the ufs-weather-model HAFSW configuration (atm/ocean/wave) in 32-bit with moving nest:

export CMAKE_FLAGS="-DAPP=HAFSW -D32BIT=ON -DMOVING_NEST=ON -DCCPP_SUITES=FV3_HAFS_v0_
→˓gfdlmp_tedmf,FV3_HAFS_v0_gfdlmp_tedmf_nonsst,FV3_HAFS_v0_thompson_tedmf_gfdlsf"

HAFS-ALL

For the ufs-weather-model HAFS-ALL configuration (data/atm/ocean/wave) in 32 bit:

export CMAKE_FLAGS="-DAPP=HAFS-ALL -D32BIT=ON -DCCPP_SUITES=FV3_HAFS_v0_gfdlmp_tedmf,FV3_
→˓HAFS_v0_gfdlmp_tedmf_nonsst"

LND Configuration

LND

For the ufs-weather-model LND configuration (datm/land):

export CMAKE_FLAGS="-DAPP=LND"

3.5. Building the Weather Model 13

UFS Weather Model Users Guide

3.5.3 Building the Model

The UFS Weather Model uses the CMake build system. There is a build script called build.sh in the top-level
directory of the WM repository that configures the build environment and runs the make command. This script also
checks that all necessary environment variables have been set.

If any of the environment variables have not been set, the build.sh script will exit with a message similar to:

./build.sh: line 11: CMAKE_Platform: Please set the CMAKE_Platform environment variable,␣
→˓e.g. [macosx.gnu|linux.gnu|linux.intel|hera.intel|...]

The WM can be built by running the following command from the ufs-weather-model directory:

./build.sh

Once build.sh is finished, users should see the executable, named ufs_model, in the ufs-weather-model/build/
directory. If users prefer to build in a different directory, specify the BUILD_DIR environment variable. For example:
export BUILD_DIR=test_cpld will build in the ufs-weather-model/test_cpld directory instead.

Expert help is available through GitHub Discussions. Users may post questions there for help with difficulties related
to the UFS WM.

3.6 Running the Model

Attention: Although the following discussions are general, users may not be able to execute the script successfully
“as is” unless they are on a Tier-1 platform.

3.6.1 Using the Regression Test Script

Users can run a number of preconfigured regression test cases from the rt.conf file using the regression test script
rt.sh in the tests directory. rt.sh is the top-level script that calls lower-level scripts to build specified WM config-
urations, set up environments, and run tests. Users must edit the rt.conf file to indicate which tests/configurations to
run.

The rt.conf File

Each line in the PSV (Pipe-separated values) file, rt.conf, contains four columns of information. The first column
specifies whether to build a test (COMPILE) or run a test (RUN). The second column specifies either configuration in-
formation for building a test or the name of a test to run. Thus, the second column in a COMPILE line will list the
application to build (e.g., -DAPP=S2S), the CCPP suite to use (e.g., -DCCPP_SUITES=FV3_GFS_2017_coupled), and
additional build options (e.g., -DDEBUG=ON) as needed. On a RUN line, the second column will contain a test name
(e.g., control_p8). The test name should match the name of one of the test files in the tests/tests directory or,
if the user is adding a new test, the name of the new test file. The third column of rt.conf relates to the platform; if
blank, the test can run on any WM Tier-1 platform. The fourth column deals with baseline creation (see information
on -c option below for more), and fv3 means that the test will be included during baseline creation.

The order of lines in rt.conf matters since rt.sh processes them sequentially; a RUN line should be preceeded by a
COMPILE line that builds the model used in the test. The following rt.conf file excerpt builds the standalone ATM
model with GFS_v16 physics in 32-bit mode and then runs the control test:

14 Chapter 3. Building and Running the UFS Weather Model

https://github.com/ufs-community/ufs-weather-model/discussions/categories/q-a
https://github.com/ufs-community/ufs-weather-model/wiki/Regression-Test-Policy-for-Weather-Model-Platforms-and-Compilers

UFS Weather Model Users Guide

COMPILE | -DAPP=ATM -DCCPP_SUITES=FV3_GFS_v16 -D32BIT=ON | | fv3
RUN | control | | fv3

The rt.conf file includes a large number of tests. If the user wants to run only specific tests, s/he can either (1)
comment out the tests to be skipped (using the # prefix) or (2) create a new file (e.g., my_rt.conf), add the tests, and
execute ./rt.sh -l my_rt.conf.

On NOAA RDHPCS

On Tier-1 platforms, users can run regression tests by editing the rt.conf file and executing:

./rt.sh -l rt.conf

Users may need to add additional command line arguments or change information in the rt.sh file as well. This
information is provided in Section 3.6.1 below.

On Other Systems

Users on non-NOAA systems will need to make adjustments to several files in the tests directory before running
rt.sh, including:

• rt.sh

• run_test.sh

• detect_machine.sh

• default_vars.sh

• fv3_conf/fv3_slurm.IN_*

• fv3_conf/compile_slurm.IN_*

• compile.sh

• module-setup.sh

The rt.sh File

This section contains additional information on command line options and troubleshooting for the rt.sh file.

Optional Arguments

To display detailed information on how to use rt.sh, users can simply run ./rt.sh, which will output the following
options:

./rt.sh -c | -e | -h | -k | -w | -d | -l <file> | -m | -n <name> | -r
-c create new baseline results
-e use ecFlow workflow manager
-h display this help
-k keep run directory after rt.sh is completed
-l runs test specified in <file>
-m compare against new baseline results
-n run single test <name>

(continues on next page)

3.6. Running the Model 15

https://github.com/ufs-community/ufs-weather-model/wiki/Regression-Test-Policy-for-Weather-Model-Platforms-and-Compilers

UFS Weather Model Users Guide

(continued from previous page)

-r use Rocoto workflow manager
-w for weekly_test, skip comparing baseline results
-d delete run direcotries that are not used by other tests

When running a large number (10’s or 100’s) of tests, the -e or -r options can significantly decrease testing time by
using a workflow manager (ecFlow or Rocoto, respectively) to queue the jobs according to dependencies and run them
concurrently. The -n option can be used to run a single test; for example, ./rt.sh -n control will build the ATM
model and run the control test. The -c option is used to create a baseline. New baselines are needed when code
changes lead to result changes and therefore deviate from existing baselines on a bit-for-bit basis.

To run rt.sh using a custom configuration file and the Rocoto workflow manager, create the configuration file (e.g.
my_rt.conf) based on the desired tests in rt.conf, and run:

./rt.sh -r -l my_rt.conf

adding additional arguments as desired.

To run a single test, users can try the following command instead of creating a my_rt.conf file:

./rt.sh -r -k -n control_p8

Troubleshooting

Users may need to adjust certain information in the rt.sh file, such as the Machine and Account variables
($MACHINE_ID and $ACCNR), for the tests to run correctly. If there is a problem with these or other variables (e.g.,
file paths), the output should indicate where:

+ echo 'Machine: ' hera.intel ' Account: ' nems
Machine: hera.intel Account: nems
+ mkdir -p /scratch1/NCEPDEV/stmp4/First.Last
mkdir: cannot create directory ‘/scratch1/NCEPDEV/stmp4/First.Last’: Permission denied
++ echo 'rt.sh error on line 370'
rt.sh error on line 370

Then, users can adjust the information in rt.sh accordingly.

Log Files

The regression test generates a number of log files. The summary log file RegressionTests_<machine>.
<compiler>.log in the tests directory compares the results of the test against the baseline for a given platform
and reports the outcome:

• 'Missing file' results when the expected files from the simulation are not found and typically occurs when
the simulation did not run to completion;

• 'OK' means that the simulation results are bit-for-bit identical to those of the baseline;

• 'NOT OK' when the results are not bit-for-bit identical; and

• 'Missing baseline' when there is no baseline data to compare against.

More detailed log files are located in the tests/log_<machine>.<compiler>/ directory. The run directory path,
which corresponds to the value of RUNDIR in the run_<test-name> file, is particularly useful. $RUNDIR is a self-
contained (i.e., sandboxed) directory with the executable file, initial conditions, model configuration files, environment

16 Chapter 3. Building and Running the UFS Weather Model

UFS Weather Model Users Guide

setup scripts and a batch job submission script. The user can run the test by navigating into $RUNDIR and invoking the
command:

sbatch job_card

This can be particularly useful for debugging and testing code changes. Note that $RUNDIR is automatically deleted at
the end of a successful regression test; specifying the -k option retains the $RUNDIR, e.g. ./rt.sh -l rt.conf -k.

Inside the $RUNDIR directory are a number of model configuration files (input.nml, model_configure, nems.
configure) and other application dependent files (e.g., ice_in for the Subseasonal-to-Seasonal Application). These
model configuration files are generated by rt.sh from the template files in the tests/parm directory. Specific values
used to fill in the template files are test-dependent and are set in two stages. First, default values are specified in
tests/default_vars.sh, and the default values are overriden if necessary by values specified in a test file tests/
tests/<test-name>. For example, the variable DT_ATMOS is initially assigned 1800 in the function export_fv3 of
the script default_vars.sh, but the test file tests/tests/control overrides this setting by reassigning 720 to the
variable.

The files fv3_run and job_card also reside in the $RUNDIR directory. These files are generated from the template
files in the tests/fv3_conf directory. job_card is a platform-specific batch job submission script, while fv3_run
prepares the initial conditions for the test by copying relevant data from the input data directory of a given platform to
the $RUNDIR directory. Table 3.3 summarizes the subdirectories discussed above.

Table 3.3: Regression Test Subdirectories

Name Description
tests/ Regression test root directory. Contains rt-related scripts and the summary log file
tests/tests/ Contains specific test files
tests/parm/ Contains templates for model configuration files
tests/fv3_conf/ Contains templates for setting up initial conditions and a batch job
tests/log_*/ Contains fine-grained log files

Creating a New Test

When a developer needs to create a new test for his/her implementation, the first step would be to identify a test in the
tests/tests directory that can be used as a basis and to examine the variables defined in the test file. As mentioned
above, some of the variables may be overrides for those defined in default_vars.sh. Others may be new variables
that are needed specifically for that test. Default variables and their values are defined in the export_fv3 function
of the default_vars.sh script for ATM configurations, the export_cpl function for S2S configurations, and the
export_datm function for the NG-GODAS configuration. Also, the names of template files for model configuration
and initial conditions can be identified via variables INPUT_NML, NEMS_CONFIGURE and FV3_RUN by running grep
-n INPUT_NML * inside the tests and tests/tests directories.

3.6.2 Using the Operational Requirement Test Script

The operational requirement test script opnReqTest in the tests directory can be used to run tests in place of rt.
sh. Given the name of a test, opnReqTest carries out a suite of test cases. Each test case addresses an aspect of the
requirements that new operational implementations must satisfy. These requirements are shown in Table 3.4. For the
following discussions on opnReqTest, the user should note the distinction between 'test name' and 'test case'.
Examples of test names are control, cpld_control and regional_control which are all found in the tests/
tests directory, whereas test case refers to any one of the operational requirements: thr, mpi, dcp, rst, bit and
dbg.

3.6. Running the Model 17

UFS Weather Model Users Guide

Table 3.4: Operational Requirements

Case Description
thr Varying the number of threads produces the same results
mpi Varying the number of MPI tasks produces the same results
dcp Varying the decomposition (i.e. tile layout of FV3) produces the same results
rst Restarting produces the same results
bit Model can be compiled in double/single precision and run to completion
dbg Model can be compiled and run to completion in debug mode

The operational requirement testing uses the same testing framework as the regression tests, so it is recommened that
the user first read Section 3.6.1. All the files in the subdirectories shown in Table 3.3 are relevant to the operational re-
quirement test. The only difference is that the opnReqTest script replaces rt.sh. The tests/opnReqTests directory
contains opnReqTest-specific lower-level scripts used to set up run configurations.

On Tier-1 platforms, tests can be run by invoking

./opnReqTest -n <test-name>

For example, ./opnReqTest -n control performs all six test cases listed in Table 3.4 for the control test. At the
end of the run, a log file OpnReqTests_<machine>.<compiler>.log is generated in the tests directory, which
informs the user whether each test case passed or failed. The user can choose to run a specific test case by invoking

./opnReqTest -n <test-name> -c <test-case>

where <test-case> is one or more comma-separated values selected from thr, mpi, dcp, rst, bit, dbg. For example,
./opnReqTest -n control -c thr,rst runs the control test and checks the reproducibility of threading and
restart.

The user can see different command line options available to opnReqTest by executing ./opnReqTest -h, which
produces the following results:

Usage: opnReqTest -n <test-name> [-c <test-case>] [-b] [-d] [-e] [-k] [-h] [-x] [-z]

-n specify <test-name>

-c specify <test-case>
defaults to all test-cases: thr,mpi,dcp,rst,bit,dbg,fhz
comma-separated list of any combination of std,thr,mpi,dcp,rst,bit,dbg,fhz

-b test reproducibility for bit; compare against baseline
-d test reproducibility for dbg; compare against baseline
-s test reproducibility for std; compare against baseline
-e use ecFlow workflow manager
-k keep run directory
-h display this help and exit
-x skip compile
-z skip run

Frequently used options are -e to use the ecFlow workflow manager, and -k to keep the $RUNDIR. Not that the Rocoto
workflow manager is not used operationally and therefore is not an option.

As discussed in Section 3.6.1, the variables and values used to configure model parameters and to set up initial condi-
tions in the $RUNDIR directory are set up in two stages. First, tests/default_vars.sh define default values; then a
specific test file in the tests/tests subdirectory either overrides the default values or creates new variables if required

18 Chapter 3. Building and Running the UFS Weather Model

https://github.com/ufs-community/ufs-weather-model/wiki/Regression-Test-Policy-for-Weather-Model-Platforms-and-Compilers

UFS Weather Model Users Guide

by the test. The regression test treats the different test cases shown in Table 3.4 as different tests. Therefore, each test
case requires a test file in the tests/tests subdirectory. Examples include control_2threads, control_decomp,
control_restart and control_debug, which are just variations of the control test to check various reproducibil-
ities. There are two potential issues with this approach. First, if several different variations of a given test were created
and included in the rt.conf file, there would be too many tests to run. Second, if a new test is added by the user, s/he
will also have to create these variations. The idea behind the operational requirement test is to automatically configure
and run these variations, or test cases, given a test file. For example, ./opnReqTest -n control will run all six
test cases in Table 3.4 based on a single control test file. Similarly, if the user adds a new test new_test, then ./
opnReqTest -n new_testwill run all test cases. This is done by the operational requirement test script opnReqTest
by adding a third stage of variable overrides. The related scripts can be found in the tests/opnReqTests directory.

3.6. Running the Model 19

UFS Weather Model Users Guide

20 Chapter 3. Building and Running the UFS Weather Model

CHAPTER

FOUR

DATA: INPUT, MODEL CONFIGURATION, AND OUTPUT FILES

The UFS Weather Model can be run in one of several configurations (sometimes referred to as “applications”), from
a single-component atmospheric model to a fully coupled model with multiple earth system components (e.g., atmo-
sphere, ocean, sea-ice and mediator). Currently, supported configurations include:

Table 4.1: Supported ufs-weather-model applications

Config-
uration
Name

Description

ATM Standalone Atmospheric Model (ATM)
ATMW ATM coupled to WW3
ATMAERO ATM coupled to GOCART
ATMAQ ATM coupled to CMAQ
ATML ATM coupled to LND
S2S Coupled ATM - MOM6 - CICE6 - CMEPS
S2SA Coupled ATM - MOM6 - CICE6 - GOCART - CMEPS
S2SW Coupled ATM - MOM6 - CICE6 - WW3 - CMEPS
S2SWA Coupled ATM - MOM6 - CICE6 - GOCART - WW3 - CMEPS
NG-
GODAS

Coupled CDEPS - DATM - MOM6 - CICE6 - CMEPS

LND Coupled CDEPS - DATM - LND -CMEPS
HAFS Coupled ATM - HYCOM - CMEPS
HAFSW Coupled ATM - HYCOM - WW3 - CMEPS
HAFS-ALL Coupled CDEPS - ATM - HYCOM - WW3 - CMEPS

This chapter describes the input and output files needed for executing the model in the various supported configura-
tions (see Table 4.1). Each of the component models for a given configuration requires specific input files, and each
component model outputs a particular set of files. Each configuration requires a set of model configuration files, as
well. This chapter describes the input and output files involved with each component model. It also discusses the
various configuration files involved in running the model. Users will need to view the input file requirements for each
component model involved in the configuration they are running. For example, users running the S2S configuration
would need to gather input data required for the ATM, MOM6, and CICE6 component models. Then, they would need
to alter certain model configuration files to reflect the ufs-weather-model configuration that they plan to run.

21

UFS Weather Model Users Guide

4.1 Input files

There are three types of files needed to execute a run:

1. Static datasets (fix files containing climatological information)

2. Files that depend on grid resolution and initial/boundary conditions

3. Model configuration files (such as namelists)

Information on the first two types of file appears in detail below for each component model. Information on Model
Configuration files can be viewed in Section 4.2.

4.1.1 ATM

Static Datasets (i.e., fix files)

The static input files for global configurations are listed and described in Table 4.2. Similar files are used for a regional
grid but are grid-specific and generated by pre-processing utilities (e.g., UFS_UTILS).

Table 4.2: Fix files containing climatological information

Filename Description
aerosol.dat External aerosols data file
CFSR.SEAICE.1982.2012.monthly.clim.grb CFS reanalysis of monthly sea ice climatology
co2historicaldata_YYYY.txt Monthly CO2 in PPMV data for year YYYY
global_albedo4.1x1.grb Four albedo fields for seasonal mean climatology: 2 for strong

zenith angle dependent (visible and near IR) and 2 for weak
zenith angle dependent

global_glacier.2x2.grb Glacier points, permanent/extreme features
global_h2oprdlos.f77 Coefficients for the parameterization of photochemical produc-

tion and loss of water (H2O)
global_maxice.2x2.grb Maximum ice extent, permanent/extreme features
global_mxsnoalb.uariz.t126.384.190.rg.grb Climatological maximum snow albedo
global_o3prdlos.f77 Monthly mean ozone coefficients
global_shdmax.0.144x0.144.grb Climatological maximum vegetation cover
global_shdmin.0.144x0.144.grb Climatological minimum vegetation cover
global_slope.1x1.grb Climatological slope type
global_snoclim.1.875.grb Climatological snow depth
global_snowfree_albedo.bosu.t126.384.190.rg.grb Climatological snowfree albedo
global_soilmgldas.t126.384.190.grb Climatological soil moisture
global_soiltype.statsgo.t126.384.190.rg.grb Soil type from the STATSGO dataset
global_tg3clim.2.6x1.5.grb Climatological deep soil temperature
global_vegfrac.0.144.decpercent.grb Climatological vegetation fraction
global_vegtype.igbp.t126.384.190.rg.grb Climatological vegetation type
global_zorclim.1x1.grb Climatological surface roughness
RTGSST.1982.2012.monthly.clim.grb Monthly, climatological, real-time global sea surface tempera-

ture
seaice_newland.grb High resolution land mask
sfc_emissivity_idx.txt External surface emissivity data table
solarconstant_noaa_an.txt External solar constant data table

22 Chapter 4. Data: Input, Model Configuration, and Output Files

https://github.com/ufs-community/UFS_UTILS

UFS Weather Model Users Guide

Grid Description and Initial Condition Files

The input files containing grid information and the initial conditions for global configurations are listed and described
in Table 4.3. The input files for a limited area model (LAM) configuration, including grid information and initial and
lateral boundary conditions, are listed and described in Table 4.4. Note that the regional grid is referred to as Tile 7
here, and it is generated by several pre-processing utilities.

Table 4.3: Input files containing grid information and initial conditions
for global configurations

Filename Description Date-
dependent

Cxx_grid.tile[1-6].nc Cxx grid information for tiles 1-6, where ‘xx’ is the grid
number

gfs_ctrl.nc NCEP NGGPS tracers, ak, and bk XXX
gfs_data.tile[1-6].nc Initial condition fields (ps, u, v, u, z, t, q, O3). May in-

clude spfo3, spfo, spf02 if multiple gases are used
XXX

oro_data.tile[1-6].nc Model terrain (topographic/orographic information) for
grid tiles 1-6

sfc_ctrl.nc Control parameters for surface input: forecast hour, date,
number of soil levels

sfc_data.tile[1-6].nc Surface properties for grid tiles 1-6 XXX

Table 4.4: Regional input files containing grid information and initial
and lateral boundary conditions for regional configurations

Filename Description Date-
dependent

Cxx_grid.tile7.nc Cxx grid information for tile 7, where ‘xx’ is the grid
number

gfs_ctrl.nc NCEP NGGPS tracers, ak, and bk XXX
gfs_bndy.tile7.HHH.nc Lateral boundary conditions at hour HHH XXX
gfs_data.tile7.nc Initial condition fields (ps, u, v, u, z, t, q, O3). May in-

clude spfo3, spfo, spf02 if multiple gases are used
XXX

oro_data.tile7.nc Model terrain (topographic/orographic information) for
grid tile 7

sfc_ctrl.nc Control parameters for surface input: forecast hour, date,
number of soil levels

sfc_data.tile7.nc Surface properties for grid tile 7 XXX

4.1.2 MOM6

Static Datasets (i.e., fix files)

The static input files for global configurations are listed and described in Table 4.5.

4.1. Input files 23

UFS Weather Model Users Guide

Table 4.5: Fix files containing climatological information

Filename Description Used in res-
olution

runoff.daitren.clim.1440x1080.v20180328.ncclimatological runoff 0.25
runoff.daitren.clim.720x576.v20180328.nc climatological runoff 0.50
seawifs-clim-1997-
2010.1440x1080.v20180328.nc

climatological chlorophyll concentration in sea water 0.25

seawifs-clim-1997-
2010.720x576.v20180328.nc

climatological chlorophyll concentration in sea water 0.50

seawifs_1998-2006_smoothed_2X.nc climatological chlorophyll concentration in sea water 1.00
tidal_amplitude.v20140616.nc climatological tide amplitude 0.25
tidal_amplitude.nc climatological tide amplitude 0.50, 1.00
geothermal_davies2013_v1.nc climatological geothermal heat flow 0.50, 0.25
KH_background_2d.nc climatological 2-d background harmonic viscosities 1.00

Grid Description and Initial Condition Files

The input files containing grid information and the initial conditions for global configurations are listed and described
in Table 4.6.

Table 4.6: Input files containing grid information and initial conditions
for global configurations

Filename Description Valid RES op-
tions

Date-
dependent

ocean_hgrid.nc horizonal grid information 1.00, 0.50, 0.25
ocean_mosaic.nc specify horizonal starting and ending points index 1.00, 0.50, 0.25
ocean_topog.nc ocean topography 1.00, 0.50, 0.25
ocean_mask.nc lans/sea mask 1.00, 0.50, 0.25
hy-
com1_75_800m.nc

vertical coordinate level thickness 1.00, 0.50, 0.25

layer_coord.nc vertical layer target potential density 1.00, 0.50, 0.25
All_edits.nc specify grid points where topography are manually modified

to adjust throughflow strength for narrow channels
0.25

topo_edits_011818.ncspecify grid points where topography are manually modified
to adjust throughflow strength for narrow channels

1.00

MOM_channels_global_025specifies restricted channel widths 0.50, 0.25
MOM_channel_SPEARspecifies restricted channel widths 1.00
interpo-
late_zgrid_40L.nc

specify target depth for output 1.00, 0.50, 0.25

MOM.res*nc ocean initial conditions (from CPC ocean DA) 0.25 XXX
MOM6_IC_TS.nc ocean temperature and salinity initial conditions (from CFSR) 1.00, 0.50, 0.25 XXX

24 Chapter 4. Data: Input, Model Configuration, and Output Files

UFS Weather Model Users Guide

4.1.3 HYCOM

Static Datasets (i.e., fix files)

Static input files have been created for several regional domains. These domains are listed and described in Table 4.7.

Table 4.7: The following table describes each domain identifier.

Identifier Description
hat10 Hurricane North Atlantic (1/12 degree)
hep20 Hurricane Eastern North Pacific (1/12 degree)
hwp30 Hurricane Western North Pacific (1/12 degree)
hcp70 Hurricane Central North Pacific (1/12 degree)

Static input files are listed and described in Table 4.8. Several datasets contain both dot-a (.a) and dot-b (.b) files. Dot-a
files contain data written as 32-bit IEEE real values (idm*jdm) and dot-b files contain plain text metadata for each field
in the dot-a file.

Table 4.8: Fix files containing climatological information

Filename Description Domain
blkdat.input Model input parameters
patch.input Tile description
ports.input Open boundary cells
forcing.chl.(a,b) Chlorophyll (monthly climatology) hat10, hep20, hwp30,

hcp70
forcing.rivers.(a,b) River discharge (monthly climatology) hat10, hep20, hwp30,

hcp70
iso.sigma.(a,b) Fixed sigma thickness hat10, hep20, hwp30,

hcp70
regional.depth.(a,b) Total depth of ocean hat10, hep20, hwp30,

hcp70
regional.grid.(a,b) Grid information for HYCOM “C” grid hat10, hep20, hwp30,

hcp70
relax.rmu.(a,b) Open boundary nudging value hat10, hep20, hwp30,

hcp70
relax.ssh.(a,b) Surface height nudging value (monthly climatology) hat10, hep20, hwp30,

hcp70
tbaric.(a,b) Thermobaricity correction hat10, hep20, hwp30,

hcp70
thkdf4.(a,b) Diffusion velocity (m/s) for Laplacian thickness diffusiv-

ity
hat10, hep20, hwp30,
hcp70

veldf2.(a,b) Diffusion velocity (m/s) for biharmonic momentum dis-
sipation

hat10, hep20, hwp30,
hcp70

veldf4.(a,b) Diffusion velocity (m/s) for Laplacian momentum dissi-
pation

hat10, hep20, hwp30,
hcp70

4.1. Input files 25

UFS Weather Model Users Guide

Grid Description and Initial Condition Files

The input files containing time dependent configuration and forcing data are listed and described in Table 4.9. These
files are generated for specific regional domains (see Table 4.7) during ocean prep. When uncoupled, the the forcing
data drives the ocean model. When coupled, the forcing data is used to fill in unmapped grid cells. Several datasets
contain both dot-a (.a) and dot-b (.b) files. Dot-a files contain data written as 32-bit IEEE real values (idm*jdm) and
dot-b files contain plain text metadata for each field in the dot-a file.

Table 4.9: Input files containing grid information, initial conditions, and
forcing data for regional configurations.

Filename Description Domain Date-
dependent

limits Model begin and end time (since HYCOM epoch) XXX
forc-
ing.airtmp.(a,b)

GFS forcing data for 2m air temperature hat10, hep20, hwp30, hcp70 XXX

forc-
ing.mslprs.(a,b)

GFS forcing data for mean sea level pressure (sym-
link)

hat10, hep20, hwp30, hcp70 XXX

forc-
ing.precip.(a,b)

GFS forcing data for precipitation rate hat10, hep20, hwp30, hcp70 XXX

forc-
ing.presur.(a,b)

GFS forcing data for mean sea level pressure hat10, hep20, hwp30, hcp70 XXX

forc-
ing.radflx.(a,b)

GFS forcing data for total radiation flux hat10, hep20, hwp30, hcp70 XXX

forc-
ing.shwflx.(a,b)

GFS forcing data for net downward shortwave radi-
ation flux

hat10, hep20, hwp30, hcp70 XXX

forc-
ing.surtmp.(a,b)

GFS forcing data for surface temperature hat10, hep20, hwp30, hcp70 XXX

forc-
ing.tauewd.(a,b)

GFS forcing data for eastward momentum flux hat10, hep20, hwp30, hcp70 XXX

forc-
ing.taunwd.(a,b)

GFS forcing data for northward momentum flux hat10, hep20, hwp30, hcp70 XXX

forc-
ing.vapmix.(a,b)

GFS forcing data for 2m vapor mixing ratio hat10, hep20, hwp30, hcp70 XXX

forc-
ing.wndspd.(a,b)

GFS forcing data for 10m wind speed hat10, hep20, hwp30, hcp70 XXX

restart_in.(a,b) Restart file for ocean state variables hat10, hep20, hwp30, hcp70 XXX

4.1.4 CICE6

Static Datasets (i.e., fix files)

No fix files are required for CICE6.

26 Chapter 4. Data: Input, Model Configuration, and Output Files

UFS Weather Model Users Guide

Grid Description and Initial Condition Files

The input files containing grid information and the initial conditions for global configurations are listed and described
in Table 4.10.

Table 4.10: Input files containing grid information and initial conditions
for global configurations

Filename Description Valid RES options Date-
dependent

cice_model_RES.res_YYYYMMDDHH.nccice model IC or restart file 1.00, 0.50, 0.25 XXX
grid_cice_NEMS_mxRES.nc cice model grid at resolution RES 100, 050, 025
kmtu_cice_NEMS_mxRES.nc cice model land mask at resolution

RES
100, 050, 025

4.1.5 WW3

Static Datasets (i.e., fix files)

No fix files are required for WW3.

Grid Description and Initial Condition Files

The files for global configurations are listed and described in Table 4.11 for GFSv16 setup and Table 4.12 for single
grid configurations. The model definitions for wave grid(s) including spectral and directional resolutions, time steps,
numerical scheme and parallelization algorithm, the physics parameters, boundary conditions and grid definitions are
stored in binary mod_def files. The aforementioned parameters are defined in ww3_grid.inp.<grd> and the ww3_grid
executables generates the binary mod_def.<grd> files.

The WW3 version number in mod_def.<grd> files must be consistent with version of the code in ufs-weather-model.
createmoddefs/creategridfiles.sh can be used in order to generate the mod_def.<grd> files, using ww3_grid.inp.<grd>,
using the WW3 version in ufs-weather-model. In order to do it, the path to the location of the ufs-weather-model
(UFSMODELDIR), the path to generated mod_def.<grd> outputs (OUTDIR), the path to input ww3_grid.inp.<grd>
files (SRCDIR) and the path to the working directory for log files (WORKDIR) should be defined.

Table 4.11: Input files containing grid information and conservative
remapping for global configurations (GFSv16 Wave)

Filename Description Spatial Resolu-
tion

nFreq nDir

mod_def.aoc_9km Antarctic Ocean PolarStereo [50N
90N]

9km 50 36

mod_def.gnh_10m Global mid core [15S 52N] 10 min 50 36
mod_def.gsh_15m southern ocean [79.5S 10.5S] 15 min 50 36
mod_def.glo_15mxt Global 1/4 extended grid [90S 90S] 15 min 36 24
mod_def.points GFSv16-wave spectral grid point

output
na na na

rmp_src_to_dst_conserv_002_001.ncConservative remapping gsh_15m
to gnh_10m

na na na

rmp_src_to_dst_conserv_003_001.ncConservative remapping aoc_9km
to gnh_10m

na na na

4.1. Input files 27

UFS Weather Model Users Guide

Table 4.12: Input grid information for single global/regional configura-
tions

Filename Description Spatial Reso-
lution

nFreq nDir

mod_def.ant_9km Regional polar stereo antarctic grid [90S 50S] 9km 36 24
mod_def.glo_10m Global grid [80S 80N] 10 min 36 24
mod_def.glo_30m Global grid [80S 80N] 30 min 36 36
mod_def.glo_1deg Global grid [85S 85N] 1 degree 25 24
mod_def.glo_2deg Global grid [85S 85N] 2 degree 20 18
mod_def.glo_5deg Global grid [85S 85N] 5 degree 18 12
mod_def.glo_gwes_30m Global NAWES 30 min wave grid [80S 80N] 30 min 36 36
mod_def.natl_6m Regional North Atlantic Basin [1.5N 45.5N;

98W 8W]
6 min 50 36

Coupled regional configurations require forcing files to fill regions that cannot be interpolated from the atmospheric
component. For a list of forcing files used to fill unmapped data points see Table 4.13.

Table 4.13: Forcing information for single regional configurations

Filename Description Resolution
wind.natl_6m Interpolated wind data from GFS 6 min

The model driver input (ww3_multi.inp) includes the input, model and output grids definition, the starting and end-
ing times for the entire model run and output types and intervals. The ww3_multi.inp.IN template is located under
tests/parm/ directory. The inputs are described hereinafter:

Table 4.14: Model driver input

NMGRIDS Number of wave model grids
NFGRIDS Number of grids defining input fields
FUNIPNT Flag for using unified point output file.
IOSRV Output server type
FPNTPROC Flag for dedicated process for unified point output
FGRDPROC Flag for grids sharing dedicated output processes

If there are input data grids defined (NFGRIDS > 0) then these grids are defined first (CPLILINE, WINDLINE, ICELINE,
CURRLINE). These grids are defined as if they are wave model grids using the file mod_def.<grd>. Each grid is defined
on a separate input line with <grd>, with nine input flags identifying $ the presence of 1) water levels 2) currents 3)
winds 4) ice $ 5) momentum 6) air density and 7-9) assimilation data.

The UNIPOINTS defines the name of this grid for all point output, which gathers the output spectral grid in a unified
point output file.

The WW3GRIDLINE defines actual wave model grids using 13 parameters to be read from a single line in the file for
each. It includes (1) its own input grid mod_def.<grd>, (2-10) forcing grid ids, (3) rank number, (12) group number
and (13-14) fraction of communicator (processes) used for this grid.

RUN_BEG and RUN_END define the starting and end times, FLAGMASKCOMP and FLAGMASKOUT are flags for masking at
printout time (default F F), followed by the gridded and point outputs start time (OUT_BEG), interval (DTFLD and DTPNT)
and end time (OUT_END). The restart outputs start time, interval and end time are define by RST_BEG, DTRST, RST_END
respectively.

28 Chapter 4. Data: Input, Model Configuration, and Output Files

UFS Weather Model Users Guide

The OUTPARS_WAV defines gridded output fields. The GOFILETYPE, POFILETYPE and RSTTYPE are gridded, point and
restart output types respectively.

No initial condition files are required for WW3.

Mesh Generation

For coupled applications using the CMEPS mediator, an ESMF Mesh file describing the WW3 domain is required. For
regional and sub-global domains, the mesh can be created using a two-step procedure.

1. Generate a SCRIP format file for the domain

2. Generate the ESMF Mesh.

In each case, the SCRIP file needs to be checked that it contains the right start and end latitudes and longitudes to match
the mod_def file being used.

For the HAFS regional domain, the following commands can be used:

ncremap -g hafswav.SCRIP.nc -G latlon=441,901#snwe=1.45,45.55,-98.05,-7.95#lat_typ=uni
→˓#lat_drc=s2n
ESMF_Scrip2Unstruct hafswav.SCRIP.nc mesh.hafs.nc 0

For the sub-global 1-deg domain extending from latitude 85.0S:

ncremap -g glo_1deg.SCRIP.nc -G latlon=171,360#snwe=-85.5,85.5,-0.5,359.5#lat_typ=uni
→˓#lat_drc=s2n
ESMF_Scrip2Unstruct glo_1deg.SCRIP.nc mesh.glo_1deg.nc 0

For the sub-global 1/2-deg domain extending from latitude 80.0S:

ncremap -g gwes_30m.SCRIP.nc -G latlon=321,720#snwe=-80.25,80.25,-0.25,359.75#lat_typ=uni
→˓#lat_drc=s2n
ESMF_Scrip2Unstruct gwes_30m.SCRIP.nc mesh.gwes_30m.nc 0

For the tripole grid, the mesh file is generated as part of the cpld_gridgen utility in UFS_UTILS.

4.1.6 CDEPS

Static Datasets (i.e., fix files)

No fix files are required for CDEPS.

Grid Description and Initial Condition Files

The input files containing grid information and the time-varying forcing files for global configurations are listed and
described in Table 4.15 and Table 4.16.

Data Atmosphere

4.1. Input files 29

https://ufs-community.github.io/UFS_UTILS/cpld_gridgen/index.html

UFS Weather Model Users Guide

Table 4.15: Input files containing grid information and forcing files for
global configurations

Filename Description Date-
dependent

cfsr_mesh.nc ESMF mesh file for CFSR data source
gefs_mesh.nc ESMF mesh file for GEFS data source
TL639_200618_ESMFmesh.nc ESMF mesh file for ERA5 data source
cfsr.YYYYMMM.nc CFSR forcing file for year YYYY and month MM XXX
gefs.YYYYMMM.nc GEFS forcing file for year YYYY and month MM XXX
ERA5.TL639.YYYY.MM.nc ERA5 forcing file for year YYYY and month MM XXX

Note: Users can find atmospheric forcing files for use with the land (LND) component in the Land Data Assimilation
(DA) data bucket. These files provide atmospheric forcing data related to precipitation, solar radiation, longwave
radiation, temperature, pressure, winds, humidity, topography, and mesh data. Forcing files for the land component
configuration come from the Global Soil Wetness Project Phase 3 (GSWP3) dataset.

clmforc.GSWP3.c2011.0.5x0.5.Prec.1999-12.nc
clmforc.GSWP3.c2011.0.5x0.5.Prec.2000-01.nc
clmforc.GSWP3.c2011.0.5x0.5.Solr.1999-12.nc
clmforc.GSWP3.c2011.0.5x0.5.Solr.2000-01.nc
clmforc.GSWP3.c2011.0.5x0.5.TPQWL.1999-12.nc
clmforc.GSWP3.c2011.0.5x0.5.TPQWL.2000-01.nc
clmforc.GSWP3.c2011.0.5x0.5.TPQWL.SCRIP.210520_ESMFmesh.nc
fv1.9x2.5_141008_ESMFmesh.nc
topodata_0.9x1.25_USGS_070110_stream_c151201.nc
topodata_0.9x1.SCRIP.210520_ESMFmesh.nc

See the Land DA User’s Guide or the WM LND Input section of this page for more information on files used in land
configurations of the UFS WM.

Data Ocean

Table 4.16: Input files containing grid information and forcing files for
global configurations

Filename Description Date-
dependent

TX025_210327_ESMFmesh_py.nc ESMF mesh file for OISST data source
sst.day.mean.YYYY.nc OISST forcing file for year YYYY XXX

Table 4.17: Input files containing grid information and forcing files for
regional configurations

Filename Description Date-
dependent

hat10_210129_ESMFmesh_py.nc ESMF mesh file for MOM6 data source
GHRSST_mesh.nc ESMF mesh file for GHRSST data source
hycom_YYYYMM_surf_nolev.nc MOM6 forcing file for year YYYY and month MM XXX
ghrsst_YYYYMMDD.nc GHRSST forcing file for year YYYY, month MM and

day DD
XXX

30 Chapter 4. Data: Input, Model Configuration, and Output Files

https://registry.opendata.aws/noaa-ufs-land-da/
https://registry.opendata.aws/noaa-ufs-land-da/
https://hydro.iis.u-tokyo.ac.jp/GSWP3/
https://land-da-workflow.readthedocs.io/en/latest/CustomizingTheWorkflow/Model.html#inputfiles

UFS Weather Model Users Guide

4.1.7 GOCART

Static Datasets (i.e., fix files)

The static input files for GOCART configurations are listed and described in Table 4.18.

Table 4.18: GOCART run control files

Filename Description
AERO.rc Atmospheric Model Configuration Parameters
AERO_ExtData.rc Model Inputs related to aerosol emissions
AERO_HISTORY.rc Create History List for Output
AGCM.rc Atmospheric Model Configuration Parameters
CA2G_instance_CA.bc.rc Resource file for Black Carbon parameters
CA2G_instance_CA.br.rc Resource file for Brown Carbon parameters
CA2G_instance_CA.oc.rc Resource file for Organic Carbon parameters
CAP.rc Meteorological fields imported from atmospheric model

(CAP_imports) & Prognostic Tracers Table (CAP_exports)
DU2G_instance_DU.rc Resource file for Dust parameters
GOCART2G_GridComp.rc The basic properties of the GOCART2G Grid Components
NI2G_instance_NI.rc Resource file for Nitrate parameters
SS2G_instance_SS.rc Resource file for Sea Salt parameters
SU2G_instance_SU.rc Resource file for Sulfur parameters

GOCART inputs defined in AERO_ExtData are listed and described in Table 4.19.

Table 4.19: GOCART inputs defined in AERO_ExtData.rc

Filename Description
ExtData/dust FENGSHA input files
ExtData/QFED QFED biomass burning emissions
ExtData/CEDS Anthropogenic emissions
ExtData/MERRA2 DMS concentration
ExtData/PIESA/sfc Aviation emissions
ExtData/PIESA/L127 H2O2, OH and NO3 mixing ratios
ExtData/MEGAN_OFFLINE_BVOC VOCs MEGAN biogenic emissions
ExtData/monochromatic Aerosol monochromatic optics files
ExtData/optics Aerosol radiation bands optic files for RRTMG
ExtData/volcanic SO2 volcanic pointwise sources

The static input files when using climatology (MERRA2) are listed and described in Table 4.20.

Table 4.20: Inputs when using climatology (MERRA2)

Filename Description
merra2.aerclim.2003-2014.m$(month).nc MERRA2 aerosol climatology mixing ratio
Optics_BC.dat BC optical look-up table for MERRA2
Optics_DU.dat DUST optical look-up table for MERRA2
Optics_OC.dat OC optical look-up table for MERRA2
Optics_SS.dat Sea Salt optical look-up table for MERRA2
Optics_SU.dat Sulfate optical look-up table for MERRA2

4.1. Input files 31

UFS Weather Model Users Guide

Grid Description and Initial Condition Files

Running GOCART in UFS does not require aerosol initial conditions, as aerosol models can always start from scratch
(cold start). However, this approach does require more than two weeks of model spin-up to obtain reasonable aerosol
simulation results. Therefore, the most popular method is to take previous aerosol simulation results. The result is not
necessarily from the same model; it could be from a climatology result, such as MERRA2, or from a different model
but with the same aerosol species and bin/size distribution.

The aerosol initial input currently read by GOCART is the same format as the UFSAtm initial input data format of
gfs_data_tile[1-6].nc in Table 4.3, so the aerosol initial conditions should be combined with the meteorological
initial conditions as one initial input file. There are many tools available for this purpose. The UFS_UTILS prepro-
cessing utilities provide a solution for this within the Global Workflow.

4.1.8 AQM (CMAQ)

Static Datasets (i.e., fix files)

The static input files for AQM configurations are listed and described in Table 4.21.

Table 4.21: AQM run control files

Filename Description
AQM.rc NOAA Air Quality Model Parameters

AQM inputs defined in aqm.rc are listed and described in Table 4.22.

Table 4.22: AQM inputs defined in aqm.rc

Filename Description
AE_cb6r3_ae6_aq.nml AE Matrix NML
GC_cb6r3_ae6_aq.nml GC Matrix NML
NR_cb6r3_ae6_aq.nml NR Matrix NML
Species_Table_TR_0.nml TR Matrix NML
CSQY_DATA_cb6r3_ae6_aq CSQY Data
PHOT_OPTICS.dat Optics Data
omi_cmaq_2015_361X179.dat OMI data
NEXUS/NEXUS_Expt.nc Emissions File
BEIS_RRFScmaq_C775.ncf Biogenic File
gspro_biogenics_1mar2017.txt Biogenic Speciation File
Hourly_Emissions_regrid_rrfs_13km_20190801_t12z_h72.ncFile Emissions File

4.1.9 LND

LND component datasets are available from the Land Data Assimilation (DA) System data bucket and can be retrieved
using a wget command:

wget https://noaa-ufs-land-da-pds.s3.amazonaws.com/current_land_da_release_data/v1.2.0/
→˓Landdav1.2.0_input_data.tar.gz
tar xvfz Landdav1.2.0_input_data.tar.gz

32 Chapter 4. Data: Input, Model Configuration, and Output Files

https://github.com/ufs-community/UFS_UTILS
https://github.com/NOAA-EMC/global-workflow
https://registry.opendata.aws/noaa-ufs-land-da/

UFS Weather Model Users Guide

These files will be untarred into an inputs directory if the user does not specify a different name. They include data
for Dec. 21, 2019. Table 4.23 describes the file types. In each file name, YYYY refers to a valid 4-digit year, MM refers
to a valid 2-digit month, and DD refers to a valid 2-digit day of the month.

Table 4.23: LND input files

Filename(s) Description File
Type

ufs-
land_C96_init_fields.tile*.nc

Initial conditions files for each tile; the files include the initial state
variables that are required for the UFS land snow DA to begin a cy-
cling run. * stands for the grid tile number [1-6].

Initial
condi-
tions

C96.maximum_snow_albedo.tile*.nc
C96.slope_type.tile*.nc
C96.soil_type.tile*.nc
C96.soil_color.tile*.nc
C96.substrate_temperature.tile*.nc
C96.vegetation_greenness.tile*.nc
C96.vegetation_type.tile*.nc
oro_C96.mx100.tile*.nc

Tiled static files that contain information on maximum snow albedo,
slope type, soil color and type, substrate temperature, vegetation
greenness and type, and orography (grid and land mask informa-
tion). * stands for the grid tile number [1-6].

Static/fixed
files

grid_spec.nc Contains information on the mosaic grid Grid
C96_grid.tile*.nc C96 grid information for tiles 1-6, where * is the grid tile number

[1-6].
Grid

C96_oro_data.tile*.nc /
oro_C96.mx100.tileN.nc

Orography files that contain grid and land mask information, where
* is the grid tile number [1-6]. mx100 refers to the ocean resolution
(100=1º).

Grid

See CDEPS for information on
atmospheric forcing files.

Atmospheric forcing CDEPS

ghcn_snwd_ioda_YYYYMMDD.ncGHCN snow depth data assimilation files DA
ufs_land_restart.YYYY-MM-
DD_HH-mm-SS.nc

Restart file Restart

Static Datasets (i.e., fix files)

The static files (listed in Table 4.23) include specific information on location, time, soil layers, and fixed (invariant)
experiment parameters that are required for the land component to run. The data must be provided in netCDF format.

The following static files are available in the inputs/UFS_WM/FV3_fix_tiled/C96/ data directory (downloaded
above):

C96.maximum_snow_albedo.tile*.nc
C96.slope_type.tile*.nc
C96.soil_type.tile*.nc
C96.soil_color.tile*.nc
C96.substrate_temperature.tile*.nc
C96.vegetation_greenness.tile*.nc
C96.vegetation_type.tile*.nc
oro_C96.mx100.tile*.nc

where * refers to the tile number (1-6). Details on the configuration variables included in this file are available in the
Land DA documentation.

4.1. Input files 33

https://land-da-workflow.readthedocs.io/en/latest/CustomizingTheWorkflow/Model.html#inputfiles

UFS Weather Model Users Guide

Grid Description and Initial Condition Files

The input files containing grid information and the initial conditions for global configurations are listed and described
in Table 4.23.

The initial conditions file includes the initial state variables that are required for the UFS land snow DA to begin a
cycling run. The data must be provided in netCDF format. The initial conditions file is available in the inputs data
directory (downloaded above) at the following path:

inputs/UFS_WM/NOAHMP_IC/ufs-land_C96_init_fields.tile*.nc

Grid files are available in the inputs/UFS_WM/FV3_input_data/INPUT directory:

C96_grid.tile*.nc
grid_spec.nc # aka C96.mosaic.nc

The C96_grid.tile*.nc files contain grid information for tiles 1-6 at C96 grid resolution. The grid_spec.nc file
contains information on the mosaic grid.

Additional Files

The LND component uses atmospheric forcing files, data assimilation files, and restart files, which are also listed in
Table 4.23.

4.2 Model configuration files

The configuration files used by the UFS Weather Model are listed here and described below:

• diag_table

• field_table

• model_configure

• ufs.configure

• suite_[suite_name].xml (used only at build time)

• datm.streams (used by CDEPS)

• datm_in (used by CDEPS)

• blkdat.input (used by HYCOM)

While the input.nml file is also a configuration file used by the UFS Weather Model, it is described in Section
4.2.9. The run-time configuration of model output fields is controlled by the combination of diag_table and
model_configure, and is described in detail in Section 4.3.

34 Chapter 4. Data: Input, Model Configuration, and Output Files

UFS Weather Model Users Guide

4.2.1 diag_table file

There are three sections in file diag_table: Header (Global), File, and Field. These are described below.

Header Description

The Header section must reside in the first two lines of the diag_table file and contain the title and date of the
experiment (see example below). The title must be a Fortran character string. The base date is the reference time used
for the time units, and must be greater than or equal to the model start time. The base date consists of six space-separated
integers in the following format: year month day hour minute second. Here is an example:

20161003.00Z.C96.64bit.non-mono
2016 10 03 00 0 0

File Description

The File Description lines are used to specify the name of the file(s) to which the output will be written. They contain
one or more sets of six required and five optional fields (optional fields are denoted by square brackets []). The lines
containing File Descriptions can be intermixed with the lines containing Field Descriptions as long as files are defined
before fields that are to be written to them. File entries have the following format:

"file_name", output_freq, "output_freq_units", file_format, "time_axis_units", "time_
→˓axis_name"
[, new_file_freq, "new_file_freq_units"[, "start_time"[, file_duration, "file_duration_
→˓units"]]]

These file line entries are described in Table 4.24.

4.2. Model configuration files 35

UFS Weather Model Users Guide

Table 4.24: Description of the six required and five optional fields used
to define output file sampling rates.

File Entry Variable Type Description
file_name CHARACTER(len=128) Output file name without the trailing “.nc”
output_freq INTEGER

The period between records in the file_name:
> 0 output frequency in output_freq_units.
= 0 output frequency every time step
(output_freq_units is ignored)
=-1 output at end of run only (output_freq_units is
ignored)

output_freq_units CHARACTER(len=10) The units in which output_freq is given. Valid values are
“years”, “months”, “days”, “minutes”, “hours”, or “seconds”.

file_format INTEGER Currently only the netCDF file format is supported. = 1
netCDF

time_axis_units CHARACTER(len=10) The units to use for the time-axis in the file. Valid values are
“years”, “months”, “days”, “minutes”, “hours”, or “seconds”.

time_axis_name CHARACTER(len=128) Axis name for the output file time axis. The character string
must contain the string ‘time’. (mixed upper and lowercase
allowed.)

new_file_freq INTEGER, OPTIONAL Frequency for closing the existing file, and creating a new file
in new_file_freq_units.

new_file_freq_units CHARACTER(len=10),
OPTIONAL

Time units for creating a new file: either years, months, days,
minutes, hours, or seconds. NOTE: If the new_file_freq field
is present, then this field must also be present.

start_time CHARACTER(len=25),
OPTIONAL

Time to start the file for the first time. The format of this string
is the same as the global date. NOTE: The new_file_freq and
the new_file_freq_units fields must be present to use this field.

file_duration INTEGER, OPTIONAL How long file should receive data after start time in
file_duration_units. This optional field can only be used if the
start_time field is present. If this field is absent, then the file
duration will be equal to the frequency for creating new files.
NOTE: The file_duration_units field must also be present if
this field is present.

file_duration_units CHARACTER(len=10),
OPTIONAL

File duration units. Can be either years, months, days, minutes,
hours, or seconds. NOTE: If the file_duration field is present,
then this field must also be present.

Field Description

The field section of the diag_table specifies the fields to be output at run time. Only fields registered with
register_diag_field(), which is an API in the FMS diag_manager routine, can be used in the diag_table.

Registration of diagnostic fields is done using the following syntax

diag_id = register_diag_field(module_name, diag_name, axes, ...)

in file FV3/atmos_cubed_sphere/tools/fv_diagnostics.F90. As an example, the sea level pressure is registered
as:

36 Chapter 4. Data: Input, Model Configuration, and Output Files

UFS Weather Model Users Guide

id_slp = register_diag_field (trim(field), 'slp', axes(1:2), & Time, 'sea-level␣
→˓pressure', 'mb', missing_value=missing_value, range=slprange)

All data written out by diag_manager is controlled via the diag_table. A line in the field section of the diag_table
file contains eight variables with the following format:

"module_name", "field_name", "output_name", "file_name", "time_sampling", "reduction_
→˓method", "regional_section", packing

These field section entries are described in Table 4.25.

Table 4.25: Description of the eight variables used to define the fields
written to the output files.

Field Entry Variable Type Description
module_name CHARACTER(len=128) Module that contains the field_name variable. (e.g. dynamic,

gfs_phys, gfs_sfc)
field_name CHARACTER(len=128) The name of the variable as registered in the model.
output_name CHARACTER(len=128) Name of the field as written in file_name.
file_name CHARACTER(len=128) Name of the file where the field is to be written.
time_sampling CHARACTER(len=50) Currently not used. Please use the string “all”.
reduc-
tion_method

CHARACTER(len=50) The data reduction method to perform prior to writing data to disk.
Current supported option is .false.. See FMS/diag_manager/
diag_table.F90 for more information.

regional_section CHARACTER(len=50) Bounds of the regional section to capture. Current supported op-
tion is “none”. See FMS/diag_manager/diag_table.F90 for
more information.

packing INTEGER Fortran number KIND of the data written. Valid values: 1=double
precision, 2=float, 4=packed 16-bit integers, 8=packed 1-byte (not
tested).

Comments can be added to the diag_table using the hash symbol (#).

A brief example of the diag_table is shown below. "..." denotes where lines have been removed.

20161003.00Z.C96.64bit.non-mono
2016 10 03 00 0 0

"grid_spec", -1, "months", 1, "days", "time"
"atmos_4xdaily", 6, "hours", 1, "days", "time"
"atmos_static" -1, "hours", 1, "hours", "time"
"fv3_history", 0, "hours", 1, "hours", "time"
"fv3_history2d", 0, "hours", 1, "hours", "time"

#
#=======================
ATMOSPHERE DIAGNOSTICS
#=======================
###
grid_spec
###
"dynamics", "grid_lon", "grid_lon", "grid_spec", "all", .false., "none", 2,
"dynamics", "grid_lat", "grid_lat", "grid_spec", "all", .false., "none", 2,

(continues on next page)

4.2. Model configuration files 37

UFS Weather Model Users Guide

(continued from previous page)

"dynamics", "grid_lont", "grid_lont", "grid_spec", "all", .false., "none", 2,
"dynamics", "grid_latt", "grid_latt", "grid_spec", "all", .false., "none", 2,
"dynamics", "area", "area", "grid_spec", "all", .false., "none", 2,
###
4x daily output
###
"dynamics", "slp", "slp", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", "vort850", "vort850", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", "vort200", "vort200", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", "us", "us", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", "u1000", "u1000", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", "u850", "u850", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", "u700", "u700", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", "u500", "u500", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", "u200", "u200", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", "u100", "u100", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", "u50", "u50", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", "u10", "u10", "atmos_4xdaily", "all", .false., "none", 2

...
###
gfs static data
###
"dynamics", "pk", "pk", "atmos_static", "all", .false., "none", 2
"dynamics", "bk", "bk", "atmos_static", "all", .false., "none", 2
"dynamics", "hyam", "hyam", "atmos_static", "all", .false., "none", 2
"dynamics", "hybm", "hybm", "atmos_static", "all", .false., "none", 2
"dynamics", "zsurf", "zsurf", "atmos_static", "all", .false., "none", 2
###
FV3 variables needed for NGGPS evaluation
###
"gfs_dyn", "ucomp", "ugrd", "fv3_history", "all", .false., "none", 2
"gfs_dyn", "vcomp", "vgrd", "fv3_history", "all", .false., "none", 2
"gfs_dyn", "sphum", "spfh", "fv3_history", "all", .false., "none", 2
"gfs_dyn", "temp", "tmp", "fv3_history", "all", .false., "none", 2
...
"gfs_phys", "ALBDO_ave", "albdo_ave", "fv3_history2d", "all", .false., "none", 2
"gfs_phys", "cnvprcp_ave", "cprat_ave", "fv3_history2d", "all", .false., "none", 2
"gfs_phys", "cnvprcpb_ave", "cpratb_ave","fv3_history2d", "all", .false., "none", 2
"gfs_phys", "totprcp_ave", "prate_ave", "fv3_history2d", "all", .false., "none", 2
...
"gfs_sfc", "crain", "crain", "fv3_history2d", "all", .false., "none", 2
"gfs_sfc", "tprcp", "tprcp", "fv3_history2d", "all", .false., "none", 2
"gfs_sfc", "hgtsfc", "orog", "fv3_history2d", "all", .false., "none", 2
"gfs_sfc", "weasd", "weasd", "fv3_history2d", "all", .false., "none", 2
"gfs_sfc", "f10m", "f10m", "fv3_history2d", "all", .false., "none", 2
...

More information on the content of this file can be found in FMS/diag_manager/diag_table.F90.

Note: None of the lines in the diag_table can span multiple lines.

38 Chapter 4. Data: Input, Model Configuration, and Output Files

UFS Weather Model Users Guide

4.2.2 field_table file

The FMS field and tracer managers are used to manage tracers and specify tracer options. All tracers advected by the
model must be registered in an ASCII table called field_table. The field table consists of entries in the following
format:

The first line of an entry should consist of three quoted strings:

• The first quoted string will tell the field manager what type of field it is. The string "TRACER" is used to
declare a field entry.

• The second quoted string will tell the field manager which model the field is being applied to. The supported
type at present is "atmos_mod" for the atmosphere model.

• The third quoted string should be a unique tracer name that the model will recognize.

The second and following lines are called methods. These lines can consist of two or three quoted strings. The first
string will be an identifier that the querying module will ask for. The second string will be a name that the querying
module can use to set up values for the module. The third string, if present, can supply parameters to the calling module
that can be parsed and used to further modify values.

An entry is ended with a forward slash (/) as the final character in a row. Comments can be inserted in the field table
by adding a hash symbol (#) as the first character in the line.

Below is an example of a field table entry for the tracer called "sphum":

added by FRE: sphum must be present in atmos
specific humidity for moist runs
"TRACER", "atmos_mod", "sphum"

"longname", "specific humidity"
"units", "kg/kg"
"profile_type", "fixed", "surface_value=3.e-6" /

In this case, methods applied to this tracer include setting the long name to “specific humidity”, the units to “kg/kg”.
Finally a field named “profile_type” will be given a child field called “fixed”, and that field will be given a field called
“surface_value” with a real value of 3.E-6. The “profile_type” options are listed in Table 4.26. If the profile type is
“fixed” then the tracer field values are set equal to the surface value. If the profile type is “profile” then the top/bottom
of model and surface values are read and an exponential profile is calculated, with the profile being dependent on the
number of levels in the component model.

Table 4.26: Tracer Profile Setup from
FMS/tracer_manager/tracer_manager.F90.

Method Type Method Name Method Control
profile_type fixed surface_value = X
profile_type profile surface_value = X, top_value = Y (atmosphere)

For the case of

"profile_type","profile","surface_value = 1e-12, top_value = 1e-15"

in a 15 layer model this would return values of surf_value = 1e-12 and multiplier = 0.6309573, i.e 1e-15 = 1e-
12*(0.6309573^15).

A method is a way to allow a component module to alter the parameters it needs for various tracers. In essence,
this is a way to modify a default value. A namelist can supply default parameters for all tracers and a method, as
supplied through the field table, will allow the user to modify the default parameters on an individual tracer basis.

4.2. Model configuration files 39

UFS Weather Model Users Guide

The lines in this file can be coded quite flexibly. Due to this flexibility, a number of restrictions are required. See
FMS/field_manager/field_manager.F90 for more information.

4.2.3 model_configure file

This file contains settings and configurations for the NUOPC/ESMF main component, including the simulation start
time, the processor layout/configuration, and the I/O selections. Table 4.27 shows the following parameters that can be
set in model_configure at run-time.

Table 4.27: Parameters that can be set in model_configure at run-time.

Parameter Meaning Type Default Value
print_esmf flag for ESMF PET files logical .true.
start_year start year of model integration integer 2019
start_month start month of model integration integer 09
start_day start day of model integration integer 12
start_hour start hour of model integration integer 00
start_minute start minute of model integration integer 0
start_second start second of model integration integer 0
nhours_fcst total forecast length integer 48
dt_atmos atmosphere time step in second integer 1800 (for C96)
restart_interval frequency to output restart file or fore-

cast hours to write out restart file
integer 0 (0: write restart file

at the end of integration;
12, -1: write out restart
every 12 hours; 12 24
write out restart files at
fh=12 and 24)

quilting flag to turn on quilt logical .true.
write_groups total number of groups integer 2
write_tasks_per_group total number of write tasks in each

write group
integer 6

output_history flag to output history files logical .true.
num_files number of output files integer 2
filename_base file name base for the output files character(255) ‘atm’ ‘sfc’
output_grid output grid character(255) gaussian_grid
output_file output file format character(255) netcdf
imo i-dimension for output grid integer 384
jmo j-dimension for output grid integer 190
output_fh history file output forecast hours or his-

tory file output frequency if the second
elelment is -1

real -1 (negative: turn
off the option, oth-
erwise overwritten
nfhout/nfhout_fh; 6 -1:
output every 6 hoursr;
6 9: output history files
at fh=6 and 9. Note:
output_fh can only take
1032 characters)

Table 4.28 shows the following parameters in model_configure that are not usually changed.

40 Chapter 4. Data: Input, Model Configuration, and Output Files

UFS Weather Model Users Guide

Table 4.28: Parameters that are not usually changed in model_configure
at run-time.

Parameter Meaning Type Default Value
calendar type of calendar year character(*) ‘gregorian’
fhrot forecast hour at restart for nems/earth

grid component clock in coupled
model

integer 0

write_dopost flag to do post on write grid component logical .true.
write_nsflip flag to flip the latitudes from S to N to

N to S on output domain
logical .false.

ideflate lossless compression level integer 1 (0:no compression,
range 1-9)

nbits lossy compression level integer 14 (0: lossless, range 1-
32)

iau_offset IAU offset lengdth integer 0

4.2.4 ufs.configure file

This file contains information about the various NEMS components and their run sequence. The active components
for a particular model configuration are given in the EARTH_component_list. For each active component, the model
name and compute tasks assigned to the component are given. A specific component might also require additional
configuration information to be present. The runSeq describes the order and time intervals over which one or more
component models integrate in time. Additional attributes, if present, provide additional configuration of the model
components when coupled with the CMEPS mediator.

For the ATM application, since it consists of a single component, the ufs.configure is simple and does not need to
be changed. A sample of the file contents is shown below:

ESMF
logKindFlag: ESMF_LOGKIND_MULTI
globalResourceControl: true

EARTH
EARTH_component_list: ATM
EARTH_attributes::
Verbosity = 0
::

ATM
ATM_model: @[atm_model]
ATM_petlist_bounds: @[atm_petlist_bounds]
ATM_omp_num_threads: @[atm_omp_num_threads]
ATM_attributes::
Verbosity = 0
Diagnostic = 0
::

Run Sequence
runSeq::
ATM
::

4.2. Model configuration files 41

UFS Weather Model Users Guide

However, ufs.configure files for other configurations of the Weather Model are more complex. A full set of ufs.
configure templates is available in the ufs-weather-model/tests/parm/ directory here. Template names follow
the pattern ufs.configure.*.IN. A number of samples are available below:

• ATMAQ configuration

• S2S (fully coupled S2S configuration that receives atmosphere-ocean fluxes from a mediator)

• S2SW (fully coupled S2SW configuration)

• S2SWA (coupled GOCART in the S2SAW configuration)

• ATM-LND (ATML configuration)

• For more HAFS, HAFSW, and HAFS-ALL configurations please see the following ufs.configure templates:

– HAFS ATM-OCN

– HAFS ATM-WAV

– HAFS ATM-OCN-WAV

– HAFS ATM-DOCN

Note: The aoflux_grid option is used to select the grid/mesh to perform atmosphere-ocean flux calculation. The
possible options are xgrid (exchange grid), agrid (atmosphere model grid) and ogrid (ocean model grid).

Note: The aoflux_code option is used to define the algorithm that will be used to calculate atmosphere-ocean fluxes.
The possible options are cesm and ccpp. If ccpp is selected then the suite file provided in the aoflux_ccpp_suite
option is used to calculate atmosphere-ocean fluxes through the use of CCPP host model.

4.2.5 The Suite Definition File (SDF) File

There are two SDFs currently supported for the UFS Medium Range Weather App configuration:

• suite_FV3_GFS_v15p2.xml

• suite_FV3_GFS_v16beta.xml

There are four SDFs currently supported for the UFS Short Range Weather App configuration:

• suite_FV3_GFS_v16.xml

• suite_FV3_RRFS_v1beta.xml

• suite_FV3_HRRR.xml

• suite_FV3_WoFS_v0.xml

Detailed descriptions of the supported suites can be found with the CCPP v6.0.0 Scientific Documentation.

42 Chapter 4. Data: Input, Model Configuration, and Output Files

https://github.com/ufs-community/ufs-weather-model/tree/develop/tests/parm
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/parm/ufs.configure.atmaq.IN
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/parm/ufs.configure.s2s_aoflux_esmf.IN
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/parm/ufs.configure.s2sw.IN
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/parm/ufs.configure.s2swa.IN
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/parm/ufs.configure.atm_lnd.IN
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/parm/ufs.configure.hafs_atm_ocn.IN
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/parm/ufs.configure.hafs_atm_wav.IN
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/parm/ufs.configure.hafs_atm_ocn_wav.IN
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/parm/ufs.configure.hafs_atm_docn.IN
https://dtcenter.ucar.edu/GMTB/v6.0.0/sci_doc/index.html

UFS Weather Model Users Guide

4.2.6 datm.streams

A data stream is a time series of input forcing files. A data stream configuration file (datm.streams) describes the
information about those input forcing files.

Table 4.29: Parameters that can be set in a data stream configuration file
at run-time.

Parameter Meaning
taxmode01 time axis mode
mapalgo01 type of spatial mapping (default=bilinear)
tInterpAlgo01 time interpolation algorithm option
readMode01 number of forcing files to read in (current option is single)
dtimit01 ratio of max/min stream delta times (default=1.0. For monthly data,

the ratio is 31/28.)
stream_offset01 shift of the time axis of a data stream in seconds (Positive offset ad-

vances the time axis forward.)
yearFirst01 the first year of the stream data
yearLast01 the last year of the stream data
yearAlign01 the simulation year corresponding to yearFirst01
stream_vectors01 the paired vector field names
stream_mesh_file01 stream mesh file name
stream_lev_dimname01 name of vertical dimension in data stream
stream_data_files01 input forcing file names
stream_data_variables01 a paired list with the name of the variable used in the file on the left

and the name of the Fortran variable on the right

A sample of the data stream file is shown below:

stream_info: cfsr.01
taxmode01: cycle
mapalgo01: bilinear
tInterpAlgo01: linear
readMode01: single
dtlimit01: 1.0
stream_offset01: 0
yearFirst01: 2011
yearLast01: 2011
yearAlign01: 2011
stream_vectors01: "u:v"
stream_mesh_file01: DATM_INPUT/cfsr_mesh.nc
stream_lev_dimname01: null
stream_data_files01: DATM_INPUT/cfsr.201110.nc
stream_data_variables01: "slmsksfc Sa_mask" "DSWRF Faxa_swdn" "DLWRF Faxa_lwdn" "vbdsf_
→˓ave Faxa_swvdr" "vddsf_ave Faxa_swvdf" "nbdsf_ave Faxa_swndr" "nddsf_ave Faxa_swndf"
→˓"u10m Sa_u10m" "v10m Sa_v10m" "hgt_hyblev1 Sa_z" "psurf Sa_pslv" "tmp_hyblev1 Sa_tbot"
→˓"spfh_hyblev1 Sa_shum" "ugrd_hyblev1 Sa_u" "vgrd_hyblev1 Sa_v" "q2m Sa_q2m" "t2m Sa_t2m
→˓" "pres_hyblev1 Sa_pbot" "precp Faxa_rain" "fprecp Faxa_snow"

4.2. Model configuration files 43

UFS Weather Model Users Guide

4.2.7 datm_in

Table 4.30: Parameters that can be set in a data stream namelist file
(datm_in) at run-time.

Parameter Meaning
datamode data mode (such as CFSR, GEFS, etc.)
factorfn_data file containing correction factor for input data
factorfn_mesh file containing correction factor for input mesh
flds_co2 if true, prescribed co2 data is sent to the mediator
flds_presaero if true, prescribed aerosol data is sent to the mediator
flds_wiso if true, water isotopes data is sent to the mediator
iradsw the frequency to update the shortwave radiation in number of steps

(or hours if negative)
model_maskfile data stream mask file name
model_meshfile data stream mesh file name
nx_global number of grid points in zonal direction
ny_global number of grid points in meridional direction
restfilm model restart file namelist

A sample of the data stream namelist file is shown below:

&datm_nml
datamode = "CFSR"
factorfn_data = "null"
factorfn_mesh = "null"
flds_co2 = .false.
flds_presaero = .false.
flds_wiso = .false.
iradsw = 1
model_maskfile = "DATM_INPUT/cfsr_mesh.nc"
model_meshfile = "DATM_INPUT/cfsr_mesh.nc"
nx_global = 1760
ny_global = 880
restfilm = "null"
/

4.2.8 blkdat.input

The HYCOM model reads parameters from a custom formatted configuraiton file, blkdat.input. The HYCOM User’s
Guide provides an in depth description of the configuration settings.

44 Chapter 4. Data: Input, Model Configuration, and Output Files

https://www.hycom.org/hycom/documentation
https://www.hycom.org/hycom/documentation

UFS Weather Model Users Guide

4.2.9 Namelist file input.nml

The atmosphere model reads many parameters from a Fortran namelist file, named input.nml. This file contains
several Fortran namelist records, some of which are always required, others of which are only used when selected
physics options are chosen:

• The CCPP Scientific Documentation provides an in-depth description of the namelist settings. Information de-
scribing the various physics-related namelist records can be viewed here.

• The Stochastic Physics Documentation describes the stochastic physics namelist records.

• The FV3 Dynamical Core Technical Documentation describes some of the other namelist records (dynamics,
grid, etc).

• The namelist section &interpolator_nml is not used in this release, and any modifications to it will have no
effect on the model results.

fms_io_nml

The namelist section &fms_io_nml of input.nml contains variables that control reading and writing of restart data
in netCDF format. There is a global switch to turn on/off the netCDF restart options in all of the modules that read or
write these files. The two namelist variables that control the netCDF restart options are fms_netcdf_override and
fms_netcdf_restart. The default values of both flags are .true., so by default, the behavior of the entire model is to
use netCDF IO mode. To turn off netCDF restart, simply set fms_netcdf_restart to .false.. The namelist variables
used in &fms_io_nml are described in Table 4.31.

4.2. Model configuration files 45

https://dtcenter.ucar.edu/GMTB/v6.0.0/sci_doc/
https://dtcenter.ucar.edu/GMTB/v6.0.0/sci_doc/_c_c_p_psuite_nml_desp.html
https://stochastic-physics.readthedocs.io/en/latest/namelist_options.html
https://noaa-emc.github.io/FV3_Dycore_ufs-v2.0.0/html/index.html

UFS Weather Model Users Guide

Table 4.31: Description of the &fms_io_nml namelist section.

Variable Name Description Data Type Default
Value

fms_netcdf_override If true, fms_netcdf_restart overrides the indi-
vidual do_netcdf_restart value. If false, indi-
vidual module settings has a precedence over the
global setting, therefore fms_netcdf_restart
is ignored.

logical .true.

fms_netcdf_restart If true, all modules using restart files will
operate under netCDF mode. If false, all
modules using restart files will operate un-
der binary mode. This flag is effective only
when fms_netcdf_override is .true. When
fms_netcdf_override is .false., individual
module setting takes over.

logical .true.

threading_read Can be ‘single’ or ‘multi’ charac-
ter(len=32)

‘multi’

format Format of restart data. Only netCDF format is
supported in fms_io.

charac-
ter(len=32)

‘netcdf’

read_all_pe Reading can be done either by all PEs (default) or
by only the root PE.

logical .true.

iospec_ieee32 If set, call mpp_open single 32-bit ieee file for
reading.

charac-
ter(len=64)

‘-N
ieee_32’

max_files_w Maximum number of write files integer 40
max_files_r Maximum number of read files integer 40
time_stamp_restart If true, time_stamp will be added to the restart

file name as a prefix.
logical .true.

print_chksum If true, print out chksum of fields that are read and
written through save_restart/restore_state.

logical .false.

show_open_namelist_file_warningFlag to warn that open_namelist_file should not
be called when INTERNAL_FILE_NML is de-
fined.

logical .false.

debug_mask_list Set debug_mask_list to true to print out
mask_list reading from mask_table.

logical .false.

checksum_required If true, compare checksums stored in the attribute
of a field against the checksum after reading in the
data.

logical .true.

This release of the UFS Weather Model sets the following variables in the &fms_io_nml namelist:

&fms_io_nml
checksum_required = .false.
max_files_r = 100
max_files_w = 100

/

46 Chapter 4. Data: Input, Model Configuration, and Output Files

UFS Weather Model Users Guide

namsfc

The namelist section &namsfc contains the filenames of the static datasets (i.e., fix files). Table 4.2 contains a brief
description of the climatological information in these files. The variables used in &namsfc to set the filenames are
described in Table 4.32.

Table 4.32: List of common variables in the *namsfc namelist section
used to set the filenames of static datasets.*

Variable Name File contains Data Type Default Value
fnglac Climatological glacier data character*500 ‘global_glacier.2x2.grb’
fnmxic Climatological maximum ice extent character*500 ‘global_maxice.2x2.grb’
fntsfc Climatological surface temperature character*500 ‘global_sstclim.2x2.grb’
fnsnoc Climatological snow depth character*500 ‘global_snoclim.1.875.grb’
fnzorc Climatological surface roughness character*500 ‘global_zorclim.1x1.grb’
fnalbc Climatological snowfree albedo character*500 ‘global_albedo4.1x1.grb’
fnalbc2 Four albedo fields for seasonal mean climatology character*500 ‘global_albedo4.1x1.grb’
fnaisc Climatological sea ice character*500 ‘global_iceclim.2x2.grb’
fntg3c Climatological deep soil temperature character*500 ‘global_tg3clim.2.6x1.5.grb’
fnvegc Climatological vegetation cover character*500 ‘global_vegfrac.1x1.grb’
fnvetc Climatological vegetation type character*500 ‘global_vegtype.1x1.grb’
fnsotc Climatological soil type character*500 ‘global_soiltype.1x1.grb’
fnsmcc Climatological soil moisture character*500 ‘global_soilmcpc.1x1.grb’
fnmskh High resolution land mask field character*500 ‘global_slmask.t126.grb’
fnvmnc Climatological minimum vegetation cover character*500 ‘global_shdmin.0.144x0.144.grb’
fnvmxc Climatological maximum vegetation cover character*500 ‘global_shdmax.0.144x0.144.grb’
fnslpc Climatological slope type character*500 ‘global_slope.1x1.grb’
fnabsc Climatological maximum snow albedo character*500 ‘global_snoalb.1x1.grb’

A sample subset of this namelist is shown below:

&namsfc
FNGLAC = 'global_glacier.2x2.grb'
FNMXIC = 'global_maxice.2x2.grb'
FNTSFC = 'RTGSST.1982.2012.monthly.clim.grb'
FNSNOC = 'global_snoclim.1.875.grb'
FNZORC = 'igbp'
FNALBC = 'global_snowfree_albedo.bosu.t126.384.190.rg.grb'
FNALBC2 = 'global_albedo4.1x1.grb'
FNAISC = 'CFSR.SEAICE.1982.2012.monthly.clim.grb'
FNTG3C = 'global_tg3clim.2.6x1.5.grb'
FNVEGC = 'global_vegfrac.0.144.decpercent.grb'
FNVETC = 'global_vegtype.igbp.t126.384.190.rg.grb'
FNSOTC = 'global_soiltype.statsgo.t126.384.190.rg.grb'
FNSMCC = 'global_soilmgldas.t126.384.190.grb'
FNMSKH = 'seaice_newland.grb'
FNVMNC = 'global_shdmin.0.144x0.144.grb'
FNVMXC = 'global_shdmax.0.144x0.144.grb'
FNSLPC = 'global_slope.1x1.grb'
FNABSC = 'global_mxsnoalb.uariz.t126.384.190.rg.grb'

/

Additional variables for the &namsfc namelist can be found in the FV3/ccpp/physics/physics/sfcsub.F file.

4.2. Model configuration files 47

UFS Weather Model Users Guide

atmos_model_nml

The namelist section &atmos_model_nml contains information used by the atmosphere model. The variables used in
&atmos_model_nml are described in Table 4.33.

Table 4.33: List of common variables in the *atmos_model_nml namelist
section.

Variable
Name

Description Data Type Default Value

blocksize Number of columns in each block sent to the
physics. OpenMP threading is done over the num-
ber of blocks. For best performance this number
should divide the number of grid cells per proces-
sor: ((npx-1)*(npy-1)/(layout_x)*(layout\
_y)). A description of these variables is provided here.

integer 1

chk-
sum_debug

If true, compute checksums for all variables passed into
the GFS physics, before and after each physics timestep.
This is very useful for reproducibility checking.

logical .false.

dy-
core_only

If true, only the dynamical core (and not the GFS
physics) is executed when running the model, essentially
running the model as a solo dynamical core.

logical .false.

debug If true, turn on additional diagnostics for the atmospheric
model.

logical .false.

sync If true, initialize timing identifiers. logical .false.
ccpp_suite Name of the CCPP physics suite character(len=256) FV3_GFS_v15p2,

set in build.sh
avg_max_lengthForecast interval (in seconds) determining when the

maximum values of diagnostic fields in FV3 dynamics
are computed.

real
3600.

A sample of this namelist is shown below:

&atmos_model_nml
blocksize = 32
chksum_debug = .false.
dycore_only = .false.
ccpp_suite = 'FV3_GFS_v16beta'

/

The namelist section relating to the FMS diagnostic manager &diag_manager_nml is described in Section 4.4.1.

gfs_physics_nml

The namelist section &gfs_physics_nml contains physics-related information used by the atmosphere model and
some of the variables are only relevant for specific parameterizations and/or configurations. The small set of variables
used in &gfs_physics_nml are described in Table 4.34.

48 Chapter 4. Data: Input, Model Configuration, and Output Files

https://noaa-emc.github.io/FV3_Dycore_ufs-v1.1.0/html/group__Parameters__List.html

UFS Weather Model Users Guide

Table 4.34: List of common variables in the *gfs_physics_nml namelist
section.

Variable
Name

Description Data Type Default Value

cplflx Flag to activate atmosphere-ocean coupling. If true,
turn on receiving exchange fields from other components
such as ocean.

logical .false.

use_med_flux Flag to receive atmosphere-ocean fluxes from mediator.
If true, atmosphere-ocean fluxes will be received into
the CCPP physics and used there, instead of calculating
them.

logical .false.

A sample subset of this namelist is shown below:

&gfs_physics_nml
use_med_flux = .true.
cplflx = .true.

/

Additional variables for the &gfs_physics_nml namelist can be found in the FV3/ccpp/data/GFS_typedefs.F90
file.

4.3 Output files

4.3.1 FV3Atm

The output files generated when running fv3.exe are defined in the diag_table file. For the default global configu-
ration, the following files are output (six files of each kind, corresponding to the six tiles of the model grid):

• atmos_4xdaily.tile[1-6].nc

• atmos_static.tile[1-6].nc

• sfcfHHH.nc

• atmfHHH.nc

• grid_spec.tile[1-6].nc

Note that the sfcf* and atmf* files are not output on the 6 tiles, but instead as a single global gaussian grid file. The
specifications of the output files (format, projection, etc) may be overridden in the model_configure input file, see
Section 4.2.3.

The regional configuration will generate similar output files, but the tile[1-6] is not included in the filename.

Two files (model_configure and diag_table) control the output that is generated by the UFS Weather Model. The
output files that contain the model variables are written to a file as shown in the figure below. The format of these
output files is selected in model_configure as NetCDF. The information in these files may be remapped, augmented
with derived variables, and converted to GRIB2 by the Unified Post Processor (UPP). Model variables are listed in the
diag_table in two groupings, fv3_history and fv3_history2d, as described in Section 4.2.1. The names of the files
that contain these model variables are specified in the model_configure file. When quilting is set to .true. for the
write component, the variables listed in the groups fv3_history and fv3_history2d are converted into the two output
files named in the model_configure file, e.g. atmfHHH. and sfcfHHH.. The bases of the file names (atm and sfc)
are specified in the model_configure file, and HHH refers to the forecast hour.

4.3. Output files 49

UFS Weather Model Users Guide

Fig. 4.1: Relationship between diag_table, model_configure and generated output files

Standard output files are logfHHH (one per forecast hour), and out and err as specified by the job submission.
ESMF may also produce log files (controlled by variable print_esmf in the model_configure file), called PETnnn.
ESMF_LogFile (one per MPI task).

Additional output files include: nemsusage.xml, a timing log file; time_stamp.out, contains the model init time;
RESTART/*nc, files needed for restart runs.

4.3.2 MOM6

MOM6 output is controlled via the FMS diag_manager using the diag_table. When MOM6 is present, the
diag_table shown above includes additional requested MOM6 fields.

A brief example of the diag_table is shown below. "..." denotes where lines have been removed.

######################
"ocn%4yr%2mo%2dy%2hr", 6, "hours", 1, "hours", "time", 6, "hours", "1901 1 1 0 0 0
→˓"
"SST%4yr%2mo%2dy", 1, "days", 1, "days", "time", 1, "days", "1901 1 1 0 0 0"
##
static fields
"ocean_model", "geolon", "geolon", "ocn%4yr%2mo%2dy%2hr", "all", .false.,
→˓"none", 2
"ocean_model", "geolat", "geolat", "ocn%4yr%2mo%2dy%2hr", "all", .false.,
→˓"none", 2
...
ocean output TSUV and others
"ocean_model", "SSH", "SSH", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2
"ocean_model", "SST", "SST", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2

(continues on next page)

50 Chapter 4. Data: Input, Model Configuration, and Output Files

UFS Weather Model Users Guide

(continued from previous page)

"ocean_model", "SSS", "SSS", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2
...
save daily SST
"ocean_model", "geolon", "geolon", "SST%4yr%2mo%2dy", "all", .false., "none",␣
→˓2
"ocean_model", "geolat", "geolat", "SST%4yr%2mo%2dy", "all", .false., "none",␣
→˓2
"ocean_model", "SST", "sst", "SST%4yr%2mo%2dy", "all", .true., "none",␣
→˓2

Z-Space Fields Provided for CMIP6 (CMOR Names):
#===
"ocean_model_z","uo","uo" ,"ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2
"ocean_model_z","vo","vo" ,"ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2
"ocean_model_z","so","so" ,"ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2
"ocean_model_z","temp","temp" ,"ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2

forcing
"ocean_model", "taux", "taux", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2
"ocean_model", "tauy", "tauy", "ocn%4yr%2mo%2dy%2hr","all",.true.,"none",2
...

4.3.3 HYCOM

HYCOM output configuration is set in the blkdat.input file. A few common configuration options are described in
Table 4.35

Table 4.35: The following table describes HYCOM output configuration.

Parameter Description
dsurfq Number of days between model diagnostics at the surface
diagfq Number of days between model diagnostics
meanfq Number of days between model time averaged diagnostics
rstrfq Number of days between model restart output
itest i grid point where detailed diagnostics are desired
jtest j grid point where detailed diagnostics are desired

HYCOM outpus multiple datasets. These datasets contain both dot-a (.a), dot-b (.b), and dot-txt (.txt) files. Dot-a files
contain data written as 32-bit IEEE real values (idm*jdm). Dot-b files contain plain text metadata for each field in
the dot-a file. Dot-txt files contain plain text data for a single cell for profiling purposes. Post-processing utilties are
available in the HYCOM-tools repository.

Table 4.36: The following table describes HYCOM output files.

Filename Description
archs.YYYY_DDD_HH.(a,b,txt) HYCOM surface archive data
archv.YYYY_DDD_HH.(a,b,txt) HYCOM archive data
restart_out.(a,b) HYCOM restart files

4.3. Output files 51

https://github.com/HYCOM/HYCOM-tools

UFS Weather Model Users Guide

4.3.4 CICE6

CICE6 output is controlled via the namelist ice_in. The relevant configuration settings are

...
histfreq = 'm','d','h','x','x'
histfreq_n = 0 , 0 , 6 , 1 , 1
hist_avg = .true.
...

In this example, histfreq_n and hist_avg specify that output will be 6-hour means. No monthly (m), daily (d),
yearly (x) or per-timestep (x) output will be produced.The hist_avg can also be set .false. to produce, for example,
instaneous fields every 6 hours.

The output of any field is set in the appropriate ice_in namelist. For example,

...
&icefields_nml
f_aice = 'mdhxx'
f_hi = 'mdhxx'
f_hs = 'mdhxx'
...

where the ice concentration (aice), ice thickness (hi) and snow thickness (hs) are set to be output on the monthly,
daily, hourly, yearly or timestep intervals set by the histfreq_n setting. Since histfreq_n is 0 for both monthly and daily
frequencies and neither yearly nor per-timestep output is requested, only 6-hour mean history files will be produced.

Further details of the configuration of CICE model output can be found in the CICE documentation Section 3.1.4.

4.3.5 WW3

The run directory includes WW3 binary outputs for the gridded outputs (YYYYMMDD.HHMMSS.out_grd.<grd>), point
outputs (YYYYMMDD.HHMMSS.out_pnt.points) and restart files (YYYYMMDD.HHMMSS.restart.<grd>).

4.3.6 CMEPS

The CMEPS mediator writes general information about the run-time configuration to the file mediator.log in the
model run directory. Optionally, the CMEPS mediator can be configured to write history files for the purposes of
examining the field exchanges at various points in the model run sequence.

4.4 Additional Information about the FMS Diagnostic Manager

The FMS (Flexible Modeling System) diagnostic manager (FMS/diag_manager) manages the output for the ATM
and, if present, the MOM6 component in the UFS Weather Model. It is configured using the diag_table file. Data
can be written at any number of sampling and/or averaging intervals specified at run-time.

52 Chapter 4. Data: Input, Model Configuration, and Output Files

https://cice-consortium-cice.readthedocs.io/en/main/user_guide/ug_implementation.html#model-input-and-output

UFS Weather Model Users Guide

4.4.1 Diagnostic Manager Namelist

The diag_manager_nml namelist contains values to control the behavior of the diagnostic manager. Some of the
more common namelist options are described in Table 4.37. See FMS/diag_manager/diag_manager.F90 for the
complete list or view the FMS documentation for additional information.

Table 4.37: Namelist variables used to control the behavior of the diag-
nostic manager.

Namelist variable Type Description Default value
max_files INTEGER Maximum number of files allowed in diag_table 31
max_output_fields INTEGER Maximum number of output fields allowed in

diag_table
300

max_input_fields INTEGER Maximum number of registered fields allowed 300
prepend_date LOGICAL Prepend the file start date to the output file. .TRUE.

is only supported if the diag_manager_init routine
is called with the optional time_init parameter.

.TRUE.

do_diag_field_log LOGICAL Write out all registered fields to a log file .FALSE.
use_cmor LOGICAL Override the missing_value to the CMOR value of

-1.0e20
.FALSE.

issue_oor_warnings LOGICAL Issue a warning if a value passed to diag_manager
is outside the given range

.TRUE.

oor_warnings_fatal LOGICAL Treat out-of-range errors as FATAL .FALSE.
debug_diag_manager LOGICAL Check if the diag table is set up correctly .FALSE.

This release of the UFS Weather Model uses the following namelist:

&diag_manager_nml
prepend_date = .false.

/

4.5 Additional Information about the Write Component

The UFS Weather Model is built using the Earth System Modeling Framework (ESMF). As part of this framework,
the output history files written by the model use an ESMF component, referred to as the write component. This model
component is configured with settings in the model_configure file, as described in Section 4.2.3. By using the ESMF
capabilities, the write component can generate output files in several different formats and several different map pro-
jections. For example, a Gaussian global grid in NEMSIO format, or a native grid in NetCDF format. The write
component also runs on independent MPI tasks, and so the computational tasks can continue while the write compo-
nent completes its work asynchronously. The configuration of write component tasks, balanced with compute tasks,
is part of the tuning for each specific application of the model (HPC, write frequency, i/o speed, model domain, etc).
For the global grid, if the write component is not selected (quilting=.false.), the FV3 code will write tiled output in the
native projection in NetCDF format. The regional grid requires the use of the write component.

4.5. Additional Information about the Write Component 53

http://noaa-gfdl.github.io/FMS/group__diag__manager__mod.html

UFS Weather Model Users Guide

54 Chapter 4. Data: Input, Model Configuration, and Output Files

CHAPTER

FIVE

CONFIGURATIONS

The UFS Weather Model (WM) can be run in any of several configurations, from a single-component atmospheric
model to a fully coupled model with multiple earth system components (e.g., atmosphere, ocean, sea-ice, land, and
mediator). This chapter documents a few of the currently supported configurations. For a full list of supported config-
urations, view the rt.conf file.

Attention: This chapter is a work in progress. There are a multitude of options for configuring the UFS WM, and
this chapter merely details a few supported configurations. It will be expanded over time to include the full set of
configurations supported for WM regression tests (RTs).

Table 5.1: Documented UFS Weather Model Configuration Categories

Config-
uration
Category

Description

ATM Standalone Atmospheric Model (ATM)
ATMW Coupled ATM and WW3
ATMAERO Coupled ATM and GOCART
ATML Coupled ATM and LND
LND Coupled CDEPS - DATM - LND -CMEPS
RRFS ATM with data assimilation
HAFS Coupled components may include CDEPS - ATM - HYCOM - WW3 - MOM6 - CMEPS

This chapter details the supported build/run options for each supported configuration. Click on the configuration cate-
gory in Table 5.1 to go to that section. Each configuration category includes sample code for setting CMAKE_FLAGS and
CCPP_SUITES. Additionally, there is a list of preferred physics suites, examples of ufs.configure files, and links to
information on other input files required to run the model.

5.1 Background

Each RT configuration file (located in the ufs-weather-model/tests/tests directory) sets default variables by
calling setup functions from ufs-weather-model/tests/default_vars.sh (see defaults here). Then, the RT
configuration file sets test-specific variablesthese values will override the defaults. For example, the control_c48
test file sets a list of files that it will use, calls the export_fv3 function from default_vars.sh, and then exports
test-specific variables. An excerpt is included below (... indicates omitted lines):

55

https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/rt.conf
https://github.com/ufs-community/ufs-weather-model/tree/develop/tests/tests
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/default_vars.sh

UFS Weather Model Users Guide

export LIST_FILES="sfcf000.nc \
sfcf024.nc \
atmf000.nc \
atmf024.nc \
RESTART/20210323.060000.coupler.res \
RESTART/20210323.060000.fv_core.res.nc \
...
RESTART/20210323.060000.sfc_data.tile5.nc \
RESTART/20210323.060000.sfc_data.tile6.nc"

export_fv3

export INPES=1
export JNPES=1
export WRTTASK_PER_GROUP=2
export NPZ=127
export NPZP=128
export NPX=49
export NPY=49
export DT_ATMOS=1200
...

default_vars.sh contains eight functions that set defaults for different types of tests. Table 5.2 describes what each
function does.

Table 5.2: default_vars.sh functions

Function
Name

Description

export_fv3 Set variables to the FV3 default values (first common variables, then model-specific ones). Different
machines may have different defaults for some variables.

export_cpl Set variables to the default values for coupled / S2S configurations.
ex-
port_35d_run

Set variables to the default values for EMC’s weekly coupled benchmark 35d tests (see rt_35d.conf).

ex-
port_datm_cdeps

Set variables to the default values for configurations that use the data atmosphere (DATM) component.

ex-
port_hafs_datm_cdeps

Set variables to the default values for HAFS configurations that use the data atmosphere (DATM)
component.

ex-
port_hafs_docn_cdeps

Set variables to the default values for HAFS configurations that use the data ocean (DOCN) compo-
nent.

ex-
port_hafs_regional

Set variables to the default values for regional HAFS configurations.

ex-
port_hafs

Set variables to the default values for HAFS configurations.

Multiple default_vars.sh functions may be called in a given test. Values set in one function will be overridden
when the same values are set in a subsequent function.

The most up-to-date list of develop branch data required for each test is available in the UFS WM RT Data Bucket.
Users should click on “Browse Bucket” and navigate to the most recent date (in develop-YYYY-MM-DD format). Then,
users should select Intel or GNU based on the compiler used in the test they want to run and then select the test name
to see the required data.

56 Chapter 5. Configurations

https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/rt_35d.conf
https://registry.opendata.aws/noaa-ufs-regtests/

UFS Weather Model Users Guide

5.2 Atmospheric Model Configurations

The atmospheric model configurations all use the UFS WM atmospheric component and may couple it with other
models (e.g., a wave or aerosol model).

5.2.1 ATM - Standalone Atmospheric Model

The standalone atmospheric model (ATM) is an FV3-based prognostic atmospheric model that can be used for short-
and medium-range research and operational forecasts. In standalone mode, ATM is not coupled to any other model.

Current ATM regression tests cover a wide variety of functionality and involve several physics tests. Table 5.3 contains
a small selection of ATM-only RTs; it will be expanded to cover the full range of ATM-only supported configurations
in time:

Table 5.3: ATM regression test descriptions

Test
Name

Description Physics
Suite
(see
namelist
options)

DT_ATMOSStart Date Fore-
cast
Length
(hours)

con-
trol_c48

Compare global control C48L127 results with
previous trunk version

FV3_GFS_v161200 2021-03-22
06:00:00

24

con-
trol_p8

Compare global control results with previous
trunk version

FV3_GFS_v17_p8720 2021-03-22
06:00:00

24

re-
gional_control

FV3 regional control (hi-res 3km, small domain)
test

FV3_GFS_v15_thompson_mynn_lam3km1800 2016-10-03
00:00:00

6

Sample CMAKE_FLAGS Setting

export CMAKE_FLAGS="-DAPP=ATM -DCCPP_SUITES=FV3_GFS_v16,FV3_GFS_v17_p8,FV3_GFS_v15_
→˓thompson_mynn_lam3km -D32BIT=ON"

Supported Physics Suites

Table 5.4: Physics suites used in the ATM configurations above

Physics Suite Description
FV3_GFS_v16 The CCPP GFS_v16 physics suite is described in the CCPP documentation here.
FV3_GFS_v17_p8 The CCPP GFS_v17_p8 physics suite is described in the CCPP documentation here.
FV3_GFS_v15_thompson_mynn_lam3kmThe CCPP GFS_v15 physics suite with the Thompson Aerosol-Aware Cloud Microphysics

Scheme (see here) and Mynn Surface Layer Module (see here) tailored for a limited area model
(LAM) 3-km resolution grid.

Additional Information

Input files required for ATM configurations can be viewed in Section 4.1.1 or in the UFS WM RT Data Bucket. Informa-
tion on ufs.configure files is available in Section 4.2.4, and a sample ATM ufs.configure file (ufs.configure.
atm.IN) is available here.

5.2. Atmospheric Model Configurations 57

https://dtcenter.ucar.edu/GMTB/v6.0.0/sci_doc/_c_c_p_psuite_nml_desp.html
https://dtcenter.ucar.edu/GMTB/v6.0.0/sci_doc/_c_c_p_psuite_nml_desp.html
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/control_c48
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/control_c48
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/control_p8
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/control_p8
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/regional_control
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/regional_control
https://dtcenter.ucar.edu/GMTB/v6.0.0/sci_doc/_g_f_s_v16_page.html
https://dtcenter.ucar.edu/GMTB/v6.0.0/sci_doc/_g_f_s_v17_p8_page.html
https://dtcenter.ucar.edu/GMTB/v6.0.0/sci_doc/_t_h_o_m_p_s_o_n.html
https://dtcenter.ucar.edu/GMTB/v6.0.0/sci_doc/group__mynn__sfc.html
https://registry.opendata.aws/noaa-ufs-regtests/
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/parm/ufs.configure.atm.IN

UFS Weather Model Users Guide

5.2.2 ATMW

The ATMW configuration couples ATM with WaveWatch III . These tests use default values set in the export_fv3
function of default_vars.sh.

58 Chapter 5. Configurations

UFS Weather Model Users Guide

Table 5.5: ATMW regression test descriptions

Test Name De-
scrip-
tion

General
Physics Pa-
rameters

Detailed Physics Param-
eters (see namelist op-
tions here for variable
definitions)

Start DateFcst
Length
(hours)

Out-
put
Grid

Con-
fig-
u-
ra-
tion
Files

Other

atmwav_control_noaero_p8 Com-
pare
global
con-
trol
re-
sults
with
pre-
vi-
ous
trunk
ver-
sion

Suite:
CCPP_SUITE=”FV3_GFS_v16”
Microphysics:
IMP_PHYSICS=8
Time Step:
DT_ATMOS=720

Set to FALSE: LHEAT-
STRG, DO_UGWP_V1,
DO_GSL_DRAG_LS_BL,
DO_GSL_DRAG_TOFD,
DO_UGWP_V1_OROG_ONLY,
DO_UGWP_V0_NST_ONLY,
LDIAG_UGWP,
CA_GLOBAL, LANDICE,
LGFDLMPRAD,
DO_SAT_ADJ, MULTI-
GRID, USE_CICE_ALB,
DO_RRTMGP Set to
TRUE: USE_MERRA2,
LSEASPRAY,
DO_UGWP_V0,
DO_GSL_DRAG_SS,
DO_CA, CA_SGS,
CA_TRIGGER, TILED-
FIX, CPL, CPLWAV,
CPLWAV2ATM,
FRAC_GRID,
WRITE_NSFLIP,
DOGP_CLDOPTICS_LUT,
DOGP_LWSCAT,
DOGP_SGS_CNV,
SATMEDMF Set to
VALUE: IALB=2,
IEMS=2, LSM=2,
IOPT_DVEG=4,
IOPT_CRS=2,
IOPT_RAD=3,
IOPT_ALB=1,
IOPT_STC=3,
IOPT_SFC=3,
IOPT_TRS=2,
IOPT_DIAG=2,
D2_BG_K1=0.20,
D2_BG_K2=0.04,
PSM_BC=1,
DDDMP=0.1, IAER=1011,
KNOB_UGWP_VERSION=0,
KNOB_UGWP_NSLOPE=1,
NCA=1, NCELLS=5,
NLIVES=12,
NTHRESH=18,
NSEED=1, NFRAC-
SEED=0.5, NSPINUP=1,
ISEED_CA=12345,
FSICL=0, FSICS=0,
DNATS=0, DZ_MIN=6,
cap_dbug_flag=0,
MIN_SEAICE=0.15,

2021-
03-
22
06:00:00

12 OUT-
PUT_GRID=gaussian_grid
Grid
Pa-
ram-
e-
ters:
IN-
PES=$INPES_cpl_atmw,
JN-
PES=$JNPES_cpl_atmw,
NPZ=127,
NPZP=128

FIELD_TABLE=field_table_thompson_noaero_tke
DIAG_TABLE=diag_table_p8_template
IN-
PUT_NML=cpld_control.nml.IN
UFS_CONFIGURE=ufs.configure.atmw.IN
FV3_RUN=control_run.IN

RUNTYPE=startup,
med_model=cmeps,
atm_model=fv3,
wav_model=ww3

5.2. Atmospheric Model Configurations 59

https://dtcenter.ucar.edu/GMTB/v6.0.0/sci_doc/_c_c_p_psuite_nml_desp.html
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/atmwav_control_noaero_p8

UFS Weather Model Users Guide

5.2.3 ATMAERO

The ATMAERO configuration couples ATM with GOCART . These tests use default values set in the export_fv3
function of default_vars.sh.

Attention: Certain physics-related settings are common to all of the supported RRFS configurations. These values
are set in each test’s configuration file because they differ from the default_vars.sh values:

General Physics Parameters:

• Suite: CCPP_SUITE= FV3_GFS_v17_p8

• Microphysics: IMP_PHYSICS=8

• Time Step: DT_ATMOS=720

Detailed Physics Parameters:

• Set to FALSE: DO_UGWP_V1, DO_GSL_DRAG_LS_BL, DO_GSL_DRAG_TOFD,
DO_UGWP_V1_OROG_ONLY, DO_UGWP_V0_NST_ONLY, LDIAG_UGWP,
CA_GLOBAL, LANDICE, LGFDLMPRAD, DO_SAT_ADJ, USE_CICE_ALB,
DO_RRTMGP

• Set to TRUE: WRITE_DOPOST, CPL, CPLCHM, USE_MERRA2, LSEASPRAY,
DO_UGWP_V0, DO_GSL_DRAG_SS, DO_CA, CA_SGS, CA_TRIGGER, TILED-
FIX, FRAC_GRID, WRITE_NSFLIP, DOGP_CLDOPTICS_LUT, DOGP_LWSCAT,
DOGP_SGS_CNV, SATMEDMF

• Set to VALUE: NSTF_NAME=’2,0,0,0,0’, atm_model=’fv3’, chm_model=’gocart’,
DOMAINS_STACK_SIZE=8000000, IALB=2, IEMS=2, LSM=2, IOPT_DVEG=4,
IOPT_CRS=2, IOPT_RAD=3, IOPT_ALB=1, IOPT_STC=3, IOPT_SFC=3,
IOPT_TRS=2, IOPT_DIAG=2, D2_BG_K1=0.20, D2_BG_K2=0.04,
PSM_BC=1, DDDMP=0.1, GWD_OPT=2, KNOB_UGWP_VERSION=0,
KNOB_UGWP_NSLOPE=1, NCA=1, NCELLS=5, NLIVES=12, NTHRESH=18,
NSEED=1, NFRACSEED=0.5, NSPINUP=1, ISEED_CA=12345, FSICL=0, FSICS=0,
DZ_MIN=6, MIN_SEAICE=0.15

The “Detailed Physics Parameters” column in Table 5.6 details physics settings that differ from both the
default_vars.sh values and these ATMAERO-specific defaults.

60 Chapter 5. Configurations

https://dtcenter.ucar.edu/GMTB/v6.0.0/sci_doc/_g_f_s_v17_p8_page.html

UFS Weather Model Users Guide

Table 5.6: ATMAERO regression test descriptions

Test Name De-
scrip-
tion

Detailed Physics Parame-
ters (see namelist options
here for variable definitions)

Start DateFcst
Length
(hours)

Out-
put
Grid

Con-
fig-
u-
ra-
tion
Files

Other

atmaero_control_p8 Com-
pare
global
re-
sults
for
prog-
nos-
tic
aerosols
with
pre-
vi-
ous
trunk
ver-
sion

Set to FALSE: LHEATSTRG
Set to TRUE: ATMAERO de-
fault values only Set to VALUE:
IAER=1011, DNATS=2

2021-
03-
22
06:00:00

24 OUT-
PUT_GRID=gaussian_grid
Grid
Pa-
ram-
e-
ters:
IN-
PES=${INPES_atmaero},
JN-
PES=${JNPES_atmaero},
NPZ=127,
NPZP=128

FIELD_TABLE=field_table_thompson_noaero_tke_GOCART
DIAG_TABLE=diag_table_cpld.IN
IN-
PUT_NML=ufs.configure.atmaero_esmf.IN
UFS_CONFIGURE=ufs.configure.atmaero.IN
FV3_RUN=control_run.IN

RESTART_INTERVAL=12
-1

atmaero_control_p8_rad Com-
pare
global
re-
sults
for
prog-
nos-
tic
aerosols
with
pre-
vi-
ous
trunk
ver-
sion

Set to FALSE: ATMAERO
values only Set to TRUE:
LHEATSTRG Set to VALUE:
IAER=2011, DNATS=2

2021-
03-
22
06:00:00

24 OUT-
PUT_GRID=gaussian_grid
Grid
Pa-
ram-
e-
ters:
NPZ=127,
NPZP=128

FIELD_TABLE=field_table_thompson_noaero_tke_GOCART
DIAG_TABLE=diag_table_cpld.IN
IN-
PUT_NML=cpld_control.nml.IN
UFS_CONFIGURE=ufs.configure.atmaero_esmf.IN
FV3_RUN=control_run.IN

RESTART_INTERVAL=12
-1

atmaero_control_p8_rad_micro Com-
pare
global
re-
sults
for
prog-
nos-
tic
aerosols
with
pre-
vi-
ous
trunk
ver-
sion

Set to FALSE: Set to TRUE:
LHEATSTRG Set to VALUE:
IAER=2011, DNATS=4

2021-
03-
22
06:00:00

24 OUT-
PUT_GRID=gaussian_grid
Grid
Pa-
ram-
e-
ters:
NPZ=127,
NPZP=128

FIELD_TABLE=field_table_thompson_noaero_tke_GOCART
DIAG_TABLE=diag_table_p8_gocart_micro
IN-
PUT_NML=merra2_thompson.nml.IN
UFS_CONFIGURE=ufs.configure.atmaero_esmf.IN
FV3_RUN=control_run.IN

RESTART_INTERVAL=’12
-1’

5.2. Atmospheric Model Configurations 61

https://dtcenter.ucar.edu/GMTB/v6.0.0/sci_doc/_c_c_p_psuite_nml_desp.html
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/atmaero_control_p8
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/atmaero_control_p8_rad
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/atmaero_control_p8_rad_micro

UFS Weather Model Users Guide

5.2.4 ATMAQ

COMING SOON!

5.2.5 ATML

The ATML configuration couples ATM with LND. These tests use default values set in the export_fv3 function of
default_vars.sh.

Attention: There is an issue with -D32BIT=ON in the ATM-LND tests, and NoahMP requires r8 libraries.

Table 5.7: ATML regression test descriptions

Test
Name

Description Physics
Suite
(see
namelist
options)

DT_ATMOSStart Date Fore-
cast
Length
(hours)

con-
trol_p8_atmlnd_sbs

Compare global control results with previous
trunk version

FV3_GFS_v17_p8720 2021-03-22
06:00:00

24

Sample CMAKE_FLAGS Setting

export CMAKE_FLAGS="-DAPP=ATML -DCCPP_SUITES=FV3_GFS_v17_p8"

Supported Physics Suites

Table 5.8: Physics suites used in the ATM configurations above

Physics Suite Description
FV3_GFS_v17_p8 The CCPP GFS_v17_p8 physics suite is described in the CCPP documentation here.

Additional Information

Input files required for ATML configurations can be viewed in Section 4.1.1 (ATM) and Section 4.1.9 (LND) or in the
UFS WM RT Data Bucket. Information on ufs.configure files is available in Section 4.2.4, and a sample ATML
ufs.configure file (ufs.configure.atm_lnd.IN) is available here.

5.3 Rapid Refresh Forecast System (RRFS)

The RRFS configurations use an ATM-only configuration on a high-resolution regional grid with data assimilation
capabilities. These tests use the default values set in the export_fv3, export_rap_common, export_rrfs_v1,
and/or export_hrrr_conus13km functions of default_vars.sh unless other values are explicitly set in a given test
file. In all tests, the values in export_fv3 are set first. Depending on the test, some of these values may be overriden
by export_rrfs_v1 (which includes values from export_rap_common) or export_hrrr_conus13km. Table 5.9
compares the values set in export_fv3 to the values set in the other functions.

62 Chapter 5. Configurations

https://dtcenter.ucar.edu/GMTB/v6.0.0/sci_doc/_c_c_p_psuite_nml_desp.html
https://dtcenter.ucar.edu/GMTB/v6.0.0/sci_doc/_c_c_p_psuite_nml_desp.html
https://dtcenter.ucar.edu/GMTB/v6.0.0/sci_doc/_g_f_s_v17_p8_page.html
https://registry.opendata.aws/noaa-ufs-regtests/
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/parm/ufs.configure.atm_lnd.IN

UFS Weather Model Users Guide

Note: export_rrfs_v1 calls export_rap_common, which calls export_fv3. Values from export_fv3 are set
first, followed by values in export_rap_common and then values in export_rrfs_v1. Values in italics indicate that
the value is inherited from a previously-called function.

Table 5.9: RRFS Default Variables

Variable export_fv3export_rap_commonexport_rrfs_v1export_hrrr_conus13km

DATE (SYEAR-SMONTH-SDAY SHOUR:00:00) 2016-
10-03
00:00:00

2021-
03-22
06:00:00

2021-
03-22
06:00:00

2021-
05-12
16:00:00

Forecast Length in hours (FHMAX) 24 24 24 2
CCPP_SUITE None

set (set
in sub-
sequent
functions
or test
file)

None set FV3_RRFS_v1betaFV3_HRRR

IMP_PHYSICS 11 8 8 8
DT_ATMOS 1800 300 300 120
OUTPUT_GRID "’cubed_sphere_grid’"‘gaus-

sian_grid’
‘gaus-
sian_grid’

lam-
bert_conformal

NTILES 6 6 6 1
WRITE_DOPOST .false. .true. .true. .false.
NSTF_NAME 2,1,1,0,5 ‘2,0,0,0,0’ ‘2,0,0,0,0’ ‘2,0,0,0,0’
IAER 111 5111 5111 1011
NPX 97 97 97 397
NPY 97 97 97 233
NPZ 64 127 127 65
NPZP 65 128 128 66
INPES 3

($INPES_dflt
— set in
machine
section)

3 3 12

JNPES 8
($JNPES_dflt
— set in
machine
section)

8 8 12

UFS_CONFIGURE ufs.configure.atm.INufs.configure.atm.INufs.configure.atm.INufs.configure.atm.IN
MODEL_CONFIGURE model_configure.INmodel_configure.INmodel_configure.INmodel_configure_rrfs_conus13km.IN
DIAG_TABLE diag_table_gfsv16diag_table_gfsv16diag_table_rap_noahdiag_table_hrrr
DIAG_TABLE_ADDITIONAL Not set Not set Not set diag_additional_rrfs_smoke
FIELD_TABLE field_table_gfsv16field_table_thompson_aero_tkefield_table_thompson_aero_tkefield_table_thompson_aero_tke_smoke
FV3_RUN None set con-

trol_run.IN
con-
trol_run.IN

rrfs_warm_run.IN

INPUT_NML None set rap.nml.IN rap.nml.IN rrfs_conus13km_hrrr.nml.IN
MAKE_NH .true. .true. .true. .false.
NA_INIT 1 1 1 0
LHEATSTRG .true. .false. .false. .false.

continues on next page

5.3. Rapid Refresh Forecast System (RRFS) 63

UFS Weather Model Users Guide

Table 5.9 – continued from previous page
Variable export_fv3export_rap_commonexport_rrfs_v1export_hrrr_conus13km

SEDI_SEMI .true. .true. .true. .false.
DECFL 10 10 10 8
RRFS_SMOKE .false. .false. .false. .true.
SEAS_OPT 2 2 2 0
LKM 0 0 0 1
SFCLAY_COMPUTE_FLUX .false. .false. .false. .true.
ICLIQ_SW 1 1 1 2
IOVR 1 1 1 3
KICE 2 9 9 9
EXTERNAL_IC .true. .true. .true. .false.
NGGPS_IC .true. .true. .true. .false.
MOUNTAIN .false. .false. .false. .true.
WARM_START .false. .false. .false. .true.
RES_LATLON_DYNAMICS "”" "”" "”" "’fv3_increment.nc’"
FHZERO 6 6 6 1.0
PRINT_DIFF_PGR .false. .false. .false. .true.
FHCYC 24 24 24 0.0
CNVCLD .true. .true. .true. .false.
CDMBWD ‘0.14,1.8,1.0,1.0’

(${CDMBWD_c96})
‘0.14,1.8,1.0,1.0'‘0.14,1.8,1.0,1.0'‘3.5,1.0’

GWD_OPT 1 1 1 3
DO_GSL_DRAG_LS_BL .false. .false. .false. .true.
DO_GSL_DRAG_SS .false. .false. .false. .true.
DO_GSL_DRAG_TOFD .false. .false. .false. .true.
DNATS 1 0 0 0
DO_SAT_ADJ .true. .false. .false. .false.
IALB 1 2 2 2
IEMS 1 2 2 2
HYBEDMF .true. .false. .false. .false.
DO_MYNNEDMF .false. .true. .true. .true.
DO_MYNNSFCLAY .false. .true. .true. .true.
DO_MYJPBL .false. .false. .false. .true.
DO_DEEP .true. .true. .false. .false.
SHAL_CNV .true. .true. .false. .false.
IMFSHALCNV 2 2 -1 -1
IMFDEEPCNV 2 2 -1 -1
LSM 1 1 2 3
LSOIL_LSM 4 4 4 9
RESTART_INTERVAL 0 0 0 1
OUTPUT_FH "12 -1" "12 -1" "12 -1" "12 -1"

Current RRFS regression tests cover a wide variety of functionality and involve several physics tests. Table 5.10 (below)
contains a selection of RTs for RRFS functionality. Blanks indicate that the value comes from the default setting file.
These default values are listed in Table 5.9 above.

64 Chapter 5. Configurations

UFS Weather Model Users Guide

Table 5.10: RRFS regression test descriptions

Test Name Description Default Settings Physics Parame-
ters (see namelist options
for variable definitions)

Fcst
Length
(hours)

FIELD_TABLEOther

rrfs_v1beta Compare
RRFS_v1beta
results with
previous
trunk ver-
sion

export_rrfs_v1 RESTART_INTERVAL=”6
-1”;
OUT-
PUT_FH=’0
09
12’

rrfs_v1beta_debugCompare
RRFS_v1beta
debug re-
sults with
previous
trunk ver-
sion

export_rrfs_v1 1 OUT-
PUT_FH=”0
1”

rrfs_v1nssl Compare
RRFS_v1nssl
results with
previous
trunk ver-
sion

export_rrfs_v1 CCPP_SUITE=FV3_RRFS_v1nssl
IMP_PHYSICS=17 Set to
FALSE: LTAEROSOL Set
to TRUE: NSSL_CCN_ON;
NSSL_HAIL_ON;
NSSL_INVERTCCN Set to
VALUE: NWAT=7

field_table_nssl_tkeRESTART_INTERVAL=”6
-1”;
OUT-
PUT_FH=’0
09
12’

rrfs_v1nssl_nohailnoccnCompare
RRFS_v1nssl_nohailnoccn
results with
previous
trunk ver-
sion

export_rrfs_v1 CCPP_SUITE=FV3_RRFS_v1nssl
IMP_PHYSICS=17 Set to
FALSE: NSSL_CCN_ON;
NSSL_HAIL_ON; LTAEROSOL
Set to TRUE: NSSL_INVERTCCN
Set to VALUE: NWAT=6

field_table_nssl_nohailnoccn_tkeRESTART_INTERVAL=”6
-1”;
OUT-
PUT_FH=’0
09
12’

conus13km_controlHRRR
physics
on 13km
domain,
control

export_hrrr_conus13km RESTART_INTERVAL=1;
QUILT-
ING_RESTART=.false.

conus13km_debugHRRR
physics on
13km do-
main, debug
run

export_hrrr_conus13km 1 RESTART_INTERVAL=1;
QUILT-
ING_RESTART=.false.

conus13km_restart_mismatchHRRR
physics on
13km do-
main, restart
run

export_hrrr_conus13km FHROT=1;RESTART_FILE_PREFIX=”${SYEAR}${SMONTH}${SDAY}.$(printf
“%02d”
$((
${SHOUR}
+
${FHROT}
)))0000”;
RRFS_RESTART=YES;
QUILT-
ING_RESTART=.false.

conus13km_2threadsHRRR
physics
on 13km
domain, two
threads

export_hrrr_conus13km 1 RESTART_INTERVAL=1;
atm_omp_num_threads=2;
QUILT-
ING_RESTART=.false.;
WRT-
TASK_PER_GROUP=6

conus13km_debug_2threadsHRRR
physics on
13km do-
main, debug
run with
threads

export_hrrr_conus13km 1 RESTART_INTERVAL=1;
atm_omp_num_threads=2;
WRT-
TASK_PER_GROUP=6;
QUILT-
ING_RESTART=.false.

conus13km_radar_tten_debugHRRR
physics
on 13km
domain,
debug,
with radar-
derived
temperature
tendencies

export_hrrr_conus13km 1 RESTART_INTERVAL=1;
FH_DFI_RADAR=’0.0,0.25,0.50,0.75,1.0’;
QUILT-
ING_RESTART=.false.

5.3. Rapid Refresh Forecast System (RRFS) 65

https://dtcenter.ucar.edu/GMTB/v6.0.0/sci_doc/_c_c_p_psuite_nml_desp.html
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/rrfs_v1beta
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/rrfs_v1beta_debug
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/rrfs_v1nssl
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/rrfs_v1nssl_nohailnoccn
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/conus13km_control
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/conus13km_debug
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/conus13km_restart_mismatch
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/conus13km_2threads
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/conus13km_debug_2threads
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/conus13km_radar_tten_debug

UFS Weather Model Users Guide

Sample CMAKE_FLAGS Setting

export CMAKE_FLAGS="-DAPP=ATM -DCCPP_SUITES=FV3_RAP,FV3_HRRR,FV3_RRFS_v1beta,FV3_RRFS_
→˓v1nssl -D32BIT=ON"

Supported Physics Suites

Table 5.11: Physics suites used in the RRFS configurations above

Physics Suite Description
FV3_HRRR The FV3_HRRR physics suite is described in the CCPP documentation here.
FV3_RRFS_v1betaThe FV3_RRFS_v1beta physics suite is described in the CCPP documentation here.
FV3_RRFS_v1nsslThe FV3_RRFS_v1nssl physics suite is similar to the FV3_RRFS_v1beta suite; however, it uses

the NSSL 2-moment microphysics scheme instead of the Thompson microphysics scheme.

Additional Information

Each test file lists the input files required for a given test. Input files required for RRFS ATM configurations can be
downloaded from the UFS WM RT Data Bucket. Users who wish to run additional (unsupported) cases may also find
useful data in the NOAA RRFS data bucket.

Information on ufs.configure files is available in Section 4.2.4. The supported RRFS WM RTs use the
same ufs.configure file that ATM-only tests do (ufs.configure.atm.IN). This file can be viewed in the
ufs-weather-model/tests/parm directory.

Additionally, users can find examples of various RRFS configuration files in the ufs-weather-model/tests/
parm directory. These files include model_configure_*, *_run.IN (input run), *.nml.IN (input namelist),
field_table_*, and diag_table_* files.

5.4 LND

The LND configuration couples DATM, CDEPS, and CMEPS with LND. These tests use default values set in the
export_datm_cdeps function of default_vars.sh.

Table 5.12: LND regression test descriptions

Test
Name

Description Physics
Suite

DT_ATMOSStart Date Fore-
cast
Length
(hours)

datm_cdeps_lnd_gswp3DATM_CDEPS_NOAHMP_GSWP3 - control N/A N/A 2000-01-01
00:00:00

24

datm_cdeps_lnd_gswp3_rstDATM_CDEPS_NOAHMP_GSWP3_RST -
control restart

N/A N/A 2000-01-01
12:00:00

12

Sample CMAKE_FLAGS Setting

export CMAKE_FLAGS="-DAPP=LND"

Additional Information

Input files required for LND configurations can be viewed in Section 4.1.9 (LND) or in the UFS WM RT Data Bucket.
Information on ufs.configure files is available in Section 4.2.4, and a sample ATML ufs.configure file (ufs.
configure.atm_lnd.IN) is available here.

66 Chapter 5. Configurations

https://dtcenter.ucar.edu/GMTB/v6.0.0/sci_doc/_h_r_r_r_suite_page.html
https://dtcenter.ucar.edu/GMTB/v6.0.0/sci_doc/_r_r_f_s_v1beta_page.html
https://registry.opendata.aws/noaa-ufs-regtests/
https://registry.opendata.aws/noaa-rrfs/
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/parm/ufs.configure.atm.IN
https://github.com/ufs-community/ufs-weather-model/tree/develop/tests/parm
https://registry.opendata.aws/noaa-ufs-regtests/
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/parm/ufs.configure.atm_lnd.IN

UFS Weather Model Users Guide

5.5 Seasonal to Subseasonal (S2S) Configurations

COMING SOON!

5.6 NG-GODAS

COMING SOON!

5.7 Hurricane Analysis and Reforecast System Configurations

The HAFS configuration uses an DATM-only configuration.

These tests use the default values set in the export_fv3, export_hafs, export_hafs_regional,
export_hafs_datm_cdeps, and export_hafs_docn_cdeps functions of default_vars.sh unless other
values are explicitly set in a given test file. In all tests, the values in export_fv3 are set first.

Note: export_hafs calls export_hafs_regional, which calls export_hafs_datm_cdeps or
export_hafs_docn_cdeps, which calls export_fv3. Values from export_fv3 are set first, followed
by values in export_hafs, export_hafs_regional, and then values in export_hafs_datm_cdeps or
export_hafs_docn_cdeps.

5.5. Seasonal to Subseasonal (S2S) Configurations 67

UFS Weather Model Users Guide

Table 5.13: Default physics-related variables used in the HAFS configu-
rations below

Export Func-
tion

Variables

export_hafs Set to FALSE: S2S, AQM, DATM_CDEPS, DOCN_CDEPS, HYBEDMF, CNVGWD,
LTAEROSOL, LHEATSTRG, IS_MOVING_NEST Set to TRUE: FV3, HAFS, SATMEDMF,
HURR_PBL, DO_GSL_DRAG_LS_BL, DO_GSL_DRAG_SS, DO_GSL_DRAG_TOFD,
LRADAR, CPL_IMP_MRG Set to VALUE: NTILES=1, IMFSHALCNV=2, IMFDEEP-
CNV=2, MONINQ_FAC=-1.0, ISATMEDMF=1, IOPT_SFC=1, IOPT_DVEG=2,
IOPT_CRS=1, IOPT_RAD=1, IOPT_ALB=2, IOPT_STC=1, LSM=1, IMP_PHYSICS=11,
IAER=111, CDMBWD=1.0,1.0,1.0,1.0, FV_CORE_TAU=5., RF_CUTOFF=30.e2,
RF_CUTOFF_NEST=50.e2, VORTEX_TRACKER=0, NTRACK=0, MOVE_CD_X=0,
MOVE_CD_Y=0, NFHOUT=3, NFHMAX_HF=-1, NFHOUT_HF=3, NSOUT=-1,
OUTPUT_FH=-1

ex-
port_hafs_regional

Set to FALSE: S2S, AQM, DOCN_CDEPS, WRITE_DOPOST, USE_COLDSTART,
MULTIGRID Set to TRUE: FV3, HAFS, CPL, QUILTING, OUTPUT_HISTORY,
CPL_IMP_MRG Set to VALUE: NTILES=1, FHMAX=6, ENS_NUM=1, DT_ATMOS=900,
RESTART_INTERVAL=0, FHROT=0, coupling_interval_fast_sec=0, WRITE_GROUP=1,
WRTTASK_PER_GROUP=6, NUM_FILES=2, FILENAME_BASE=“‘atm’ ‘sfc’”, OUT-
PUT_GRID=“‘regional_latlon’”, OUTPUT_FILE=“‘netcdf’”, IDEFLATE=0, QUAN-
TIZE_NSD=0, NFHOUT=3, NFHMAX_HF=-1, NFHOUT_HF=3, CEN_LON=-62.0,
CEN_LAT=25.0, LON1=-114.5, LAT1=-5.0, LON2=-9.5, LAT2=55.0, DLON=0.03,
DLAT=0.03, DIAG_TABLE=diag_table_hafs, FIELD_TABLE=field_table_hafs,
WW3OUTDTHR=3, OUTPARS_WAV=”WND HS T01 T02 DIR FP DP PHS PTP
PDIR UST CHA USP”, WAV_CUR=’C’, med_model=cmeps, pio_rearranger=box,
CAP_DBUG_FLAG=0, CPLMODE=hafs, RUNTYPE=startup, MESH_WAV=mesh.hafs.nc,
MODDEF_WAV=mod_def.natl_6m

ex-
port_hafs_datm_cdeps

Set to FALSE: FV3, S2S, AQM, DOCN_CDEPS Set to TRUE: HAFS, DATM_CDEPS
Set to VALUE: NTILES=1, atm_model=datm, DATM_IN_CONFIGURE=datm_in,
DATM_STREAM_CONFIGURE=hafs_datm.streams.era5.IN

ex-
port_hafs_docn_cdeps

Set to FALSE: S2S, AQM Set to TRUE: FV3, HAFS, DOCN_CDEPS Set to
VALUE: NTILES=1, ocn_model=docn, ocn_datamode=sstdata, pio_rearranger=box,
DOCN_IN_CONFIGURE=docn_in, DOCN_STREAM_CONFIGURE=hafs_docn.streams.IN

68 Chapter 5. Configurations

UFS Weather Model Users Guide

Table 5.14: HAFS regression test descriptions

Test Name De-
scrip-
tion

General
Physics Pa-
rameters

Detailed Physics Param-
eters (see namelist op-
tions here for variable
definitions)

Start DateFcst
Length
(hours)

Out-
put
Grid

Con-
fig-
u-
ra-
tion
Files

Other

rhafs_global_1nest_atm Com-
pare
HAFS
global
with
1
nest
and
at-
mo-
sphere
only
re-
sults
with
pre-
vi-
ous
trunk
ver-
sion

Suite:
CCPP_SUITE=”FV3_HAFS_v1_gfdlmp_tedmf”
Microphysics:
IMP_PHYSICS=11
Time Step:
DT_ATMOS=90

Set to FALSE: MOUN-
TAIN, WARM_START,
FULL_ZS_FILTER,
CPLFLX, CPLWAV,
CPLWAV2ATM,
CPL_IMP_MRG, CMEPS,
USE_COLDSTART Set
to TRUE: EXTER-
NAL_IC, NGGPS_IC,
CPLOCN2ATM, NESTED
Set to VALUE: See
export_hafs default
values.

2020-
08-
25
12:00:00

6 OUT-
PUT_GRID=global_latlon,
OUT-
PUT_GRID_2=rotated_latlon
Grid
Pa-
ram-
e-
ters:
IN-
PES=4,
JN-
PES=5,
NPX=97,
NPY=97,
NPZ=64,
NPZP=$(($NPZ
+
1)),
IN-
PES_NEST02=6,
JN-
PES_NEST02=10,
NPX_NEST02=241,
NPY_NEST02=241

FIELD_TABLE=field_table_hafs
DIAG_TABLE=diag_table_hafs_template
IN-
PUT_NML=input_global_hafs.nml.IN
IN-
PUT_NEST02_NML=input_nest_hafs.nml.IN
MODEL_CONFIGURE=”model_configure_hafs.IN”
UFS_CONFIGURE=”ufs.configure.hafs_atm.IN”
FV3_RUN=”hafs_fv3_run.IN”

RESTART_INTERVAL=1,
atm_omp_num_threads=2,
WARM_START=.false.,
READ_INCREMENT=.false.,
RES_LATLON_DYNAMICS=“‘fv3_increment.nc’”

hafs_global_multiple_4nests_atmCom-
pare
HAFS
global
with
4
mul-
ti-
ple
nests
and
at-
mo-
sphere
only
re-
sults
with
pre-
vi-
ous
trunk
ver-
sion

Suite:
CCPP_SUITE=”FV3_HAFS_v1_gfdlmp_tedmf”
Microphysics:
IMP_PHYSICS=11
Time Step:
DT_ATMOS=90

Set to FALSE: MOUN-
TAIN, WARM_START,
FULL_ZS_FILTER,
CPLFLX, CPLWAV,
CPLWAV2ATM,
CPL_IMP_MRG, CMEPS,
USE_COLDSTART Set to
TRUE: WRITE_DOPOST,
EXTERNAL_IC, NG-
GPS_IC, CPLOCN2ATM,
NESTED Set to VALUE:
Also, see export_hafs
default values.

2020-
08-
25
12:00:00

6 OUT-
PUT_GRID=global_latlon,
OUT-
PUT_GRID_2=regional_latlon,
OUT-
PUT_GRID_3=rotated_latlon,
OUT-
PUT_GRID_4=rotated_latlon,
OUT-
PUT_GRID_5=rotated_latlon
Grid
Pa-
ram-
e-
ters:
IN-
PES=4,
JN-
PES=5,
NPX=97,
NPY=97,
NPZ=64,
NPZP=$(($NPZ
+
1)),
IN-
PES_NEST02=6,
JN-
PES_NEST02=10,
NPX_NEST02=241,
NPY_NEST02=241,
IN-
PES_NEST03=6,
JN-
PES_NEST03=10,
NPX_NEST03=241,
NPY_NEST03=241,
IN-
PES_NEST04=6,
JN-
PES_NEST04=10,
NPX_NEST04=361,
NPY_NEST04=361,
IN-
PES_NEST05=6,
JN-
PES_NEST05=10,
NPX_NEST05=361,
NPY_NEST05=361

FIELD_TABLE=field_table_hafs
DIAG_TABLE=diag_table_hafs_template
IN-
PUT_NML=input_global_hafs.nml.IN
IN-
PUT_NEST02_NML=input_nest_hafs.nml.IN
IN-
PUT_NEST03_NML=input_nest_hafs.nml.IN
IN-
PUT_NEST04_NML=input_nest_hafs.nml.IN
IN-
PUT_NEST05_NML=input_nest_hafs.nml.IN
MODEL_CONFIGURE=”model_configure_hafs.IN”
UFS_CONFIGURE=”ufs.configure.hafs_atm.IN”
FV3_RUN=”hafs_fv3_run.IN”

RESTART_INTERVAL=1,
atm_omp_num_threads=2,
WARM_START=.false.,
READ_INCREMENT=.false.,
RES_LATLON_DYNAMICS=“‘fv3_increment.nc’”

hafs_global_storm_following_1nest_atmCom-
pare
HAFS
global
with
1
storm-
following
mov-
ing
nest
and
at-
mo-
sphere
only
re-
sults
with
pre-
vi-
ous
trunk
ver-
sion

Suite:
CCPP_SUITE=”FV3_HAFS_v1_gfdlmp_tedmf”
Microphysics:
IMP_PHYSICS=11
Time Step:
DT_ATMOS=180

Set to FALSE: MOUN-
TAIN, WARM_START,
FULL_ZS_FILTER,
IS_MOVING_NEST=”.false.,.true.”,
CPLFLX, CPLWAV,
CPLWAV2ATM,
CPL_IMP_MRG, CMEPS,
USE_COLDSTART Set
to TRUE: EXTER-
NAL_IC, NGGPS_IC,
CPLOCN2ATM, NESTED
Set to VALUE: Also, see
export_hafs default values.

2020-
08-
25
12:00:00

6 OUT-
PUT_GRID=global_latlon,
OUT-
PUT_GRID_2=rotated_latlon
Grid
Pa-
ram-
e-
ters:
IN-
PES=4,
JN-
PES=5,
NPX=97,
NPY=97,
NPZ=64,
NPZP=$(($NPZ
+
1)),
IN-
PES_NEST02=6,
JN-
PES_NEST02=10,
NPX_NEST02=73,
NPY_NEST02=73

FIELD_TABLE=field_table_hafs
DIAG_TABLE=diag_table_hafs_template
IN-
PUT_NML=input_global_hafs.nml.IN
IN-
PUT_NEST02_NML=input_nest_hafs.nml.IN
MODEL_CONFIGURE=”model_configure_hafs.IN”
UFS_CONFIGURE=”ufs.configure.hafs_atm.IN”
FV3_RUN=”hafs_fv3_run.IN”

RESTART_INTERVAL=1,
atm_omp_num_threads=2,
WARM_START=.false.,
READ_INCREMENT=.false.,
RES_LATLON_DYNAMICS=“‘fv3_increment.nc’”

hafs_regional_1nest_atm Com-
pare
HAFS
re-
gional
with
1
nest
and
at-
mo-
sphere
only
re-
sults
with
pre-
vi-
ous
trunk
ver-
sion

Suite:
CCPP_SUITE=”FV3_HAFS_v1_gfdlmp_tedmf”
Microphysics:
IMP_PHYSICS=11
Time Step:
DT_ATMOS=90

Set to FALSE: MOUN-
TAIN, WARM_START,
FULL_ZS_FILTER,
CPLFLX, CPLWAV,
CPLWAV2ATM,
CPL_IMP_MRG, CMEPS,
USE_COLDSTART Set to
TRUE: EXTERNAL_IC,
NGGPS_IC, REGIONAL,
CPLOCN2ATM, NESTED
Set to VALUE: Also, see
export_hafs default values.

2020-
08-
25
12:00:00

6 OUT-
PUT_GRID=rotated_latlon,
OUT-
PUT_GRID_2=rotated_latlon
Grid
Pa-
ram-
e-
ters:
IN-
PES=6,
JN-
PES=10,
NPX=241,
NPY=241,
NPZ=64,
NPZP=$(($NPZ
+
1)),
IN-
PES_NEST02=6,
JN-
PES_NEST02=10,
NPX_NEST02=361,
NPY_NEST02=361

FIELD_TABLE=field_table_hafs
DIAG_TABLE=diag_table_hafs_template
IN-
PUT_NML=input_regional_hafs.nml.IN
IN-
PUT_NEST02_NML=input_nest_hafs.nml.IN
MODEL_CONFIGURE=”model_configure_hafs.IN”
UFS_CONFIGURE=”ufs.configure.hafs_atm.IN”
FV3_RUN=”hafs_fv3_run.IN”

RESTART_INTERVAL=1,
atm_omp_num_threads=2,
WARM_START=.false.,
READ_INCREMENT=.false.,
RES_LATLON_DYNAMICS=“‘fv3_increment.nc’”

hafs_regional_atm Com-
pare
HAFS
re-
gional
at-
mo-
sphere
only
re-
sults
with
pre-
vi-
ous
trunk
ver-
sion

Suite:
CCPP_SUITE=”FV3_HAFS_v1_gfdlmp_tedmf”
Microphysics:
IMP_PHYSICS=11
Time Step:
DT_ATMOS=180

Set to FALSE: MOUN-
TAIN, WARM_START,
FULL_ZS_FILTER,
CPLFLX, CPLWAV,
CPLWAV2ATM,
CPL_IMP_MRG, CMEPS,
USE_COLDSTART Set to
TRUE: EXTERNAL_IC,
NGGPS_IC, REGIONAL,
CPLOCN2ATM Set to
VALUE: Also, see ex-
port_hafs default values.

2019-
08-
29
00:00:00

6 OUT-
PUT_GRID=regional_latlon
Grid
Pa-
ram-
e-
ters:
IN-
PES=20,
JN-
PES=12,
NPX=721,
NPY=601,
NPZ=91,
NPZP=$(($NPZ
+
1))

FIELD_TABLE=field_table_hafs
DIAG_TABLE=diag_table_hafs_template
IN-
PUT_NML=input_regional_hafs.nml.IN
MODEL_CONFIGURE=”model_configure_hafs.IN”
UFS_CONFIGURE=”ufs.configure.hafs_atm.IN”
FV3_RUN=”hafs_fv3_run.IN”

RESTART_INTERVAL=1,
atm_omp_num_threads=2,
WARM_START=.false.,
READ_INCREMENT=.false.,
RES_LATLON_DYNAMICS=“‘fv3_increment.nc’”

hafs_regional_atm_ocn Com-
pare
HAFS
re-
gional
atmosphere-
ocean
cou-
pled
HY-
COM
re-
sults
with
pre-
vi-
ous
trunk
ver-
sion

Suite:
CCPP_SUITE=”FV3_HAFS_v1_gfdlmp_tedmf_nonsst”
Microphysics:
IMP_PHYSICS=11
Time Step:
DT_ATMOS=180

Set to FALSE: MOUN-
TAIN, WARM_START,
FULL_ZS_FILTER,
CPLWAV, CPLWAV2ATM,
CDEPS_DOCN Set to
TRUE: EXTERNAL_IC,
NGGPS_IC, REGIONAL,
CPLFLX, CPLOCN2ATM,
CPL_IMP_MRG Set to
VALUE: Also, see ex-
port_hafs_regional then
export_hafs default values.

2019-
08-
29
00:00:00

6 OUT-
PUT_GRID=regional_latlon
Grid
Pa-
ram-
e-
ters:
IN-
PES=20,
JN-
PES=12,
NPX=721,
NPY=601,
NPZ=91,
NPZP=$(($NPZ
+
1))

FIELD_TABLE=field_table_hafs
DIAG_TABLE=diag_table_hafs_template
IN-
PUT_NML=input_regional_hafs.nml.IN
MODEL_CONFIGURE=”model_configure_hafs.IN”
UFS_CONFIGURE=”ufs.configure.hafs_atm_ocn.IN”
FV3_RUN=”hafs_fv3_run.IN
hy-
com_hat10_run.IN”

RESTART_INTERVAL=1,
atm_omp_num_threads=2,
WARM_START=.false.,
READ_INCREMENT=.false.,
RES_LATLON_DYNAMICS=“‘fv3_increment.nc’”

hafs_regional_atm_ocn_wav Com-
pare
HAFS
re-
gional
atmosphere-
ocean-
wave
cou-
pled
re-
sults
with
pre-
vi-
ous
trunk
ver-
sion

Suite:
CCPP_SUITE=”FV3_HAFS_v1_gfdlmp_tedmf_nonsst”
Microphysics:
IMP_PHYSICS=11
Time Step:
DT_ATMOS=180

Set to FALSE: MOUN-
TAIN, WARM_START,
FULL_ZS_FILTER,
CPLWAV2ATM,
CDEPS_DOCN Set to
TRUE: EXTERNAL_IC,
NGGPS_IC, REGIONAL,
CPLFLX, CPLOCN2ATM,
CPLWAV, CPL_IMP_MRG
Set to VALUE: Also, see
export_hafs_regional then
export_hafs default values.

2019-
08-
29
00:00:00

6 OUT-
PUT_GRID=regional_latlon
Grid
Pa-
ram-
e-
ters:
IN-
PES=20,
JN-
PES=12,
NPX=721,
NPY=601,
NPZ=91,
NPZP=$(($NPZ
+
1))

FIELD_TABLE=field_table_hafs
DIAG_TABLE=diag_table_hafs_template
IN-
PUT_NML=input_regional_hafs.nml.IN
MODEL_CONFIGURE=”model_configure_hafs.IN”
UFS_CONFIGURE=”ufs.configure.hafs_atm_ocn_wav.IN”
FV3_RUN=”hafs_fv3_run.IN
hy-
com_hat10_run.IN
hafs_ww3_run.IN”

RESTART_INTERVAL=1,
atm_omp_num_threads=2,
WARM_START=.false.,
READ_INCREMENT=.false.,
RES_LATLON_DYNAMICS=“‘fv3_increment.nc’”

hafs_regional_atm_thompson_gfdlsfCom-
pare
the
re-
sults
from
HAFS
re-
gional
at-
mo-
sphere
only
us-
ing
the
Thomp-
son
mi-
cro-
physics
scheme
and
GFDL
sur-
face
layer
scheme
with
pre-
vi-
ous
trunk
ver-
sion

Suite:
CCPP_SUITE=”FV3_HAFS_v1_thompson_tedmf_gfdlsf”
Microphysics:
IMP_PHYSICS=8
Time Step:
DT_ATMOS=180

Set to FALSE: MOUN-
TAIN, WARM_START,
FULL_ZS_FILTER,
DO_SAT_ADJ, CPLFLX,
CPLWAV, CPLWAV2ATM,
CPL_IMP_MRG, CMEPS,
USE_COLDSTART Set to
TRUE: EXTERNAL_IC,
NGGPS_IC, REGIONAL,
CPLOCN2ATM Set to
VALUE: Also, see ex-
port_hafs default values.

2019-
08-
29
00:00:00

6 OUT-
PUT_GRID=cubed_sphere_grid
Grid
Pa-
ram-
e-
ters:
IN-
PES=20,
JN-
PES=12,
NPX=721,
NPY=601,
NPZ=91,
NPZP=$(($NPZ
+
1))

FIELD_TABLE=field_table_hafs_thompson
DIAG_TABLE=diag_table_hafs_template
IN-
PUT_NML=input_regional_hafs.nml.IN
MODEL_CONFIGURE=”model_configure_hafs.IN”
UFS_CONFIGURE=”ufs.configure.hafs_atm.IN”
FV3_RUN=”hafs_fv3_run.IN”

RESTART_INTERVAL=1,
atm_omp_num_threads=2,
WARM_START=.false.,
READ_INCREMENT=.false.,
RES_LATLON_DYNAMICS=“‘fv3_increment.nc’”

hafs_regional_atm_wav Com-
pare
HAFS
re-
gional
atmosphere-
wave
cou-
pled
re-
sults
with
pre-
vi-
ous
trunk
ver-
sion

Suite:
CCPP_SUITE=”FV3_HAFS_v1_gfdlmp_tedmf”
Microphysics:
IMP_PHYSICS=11
Time Step:
DT_ATMOS=180

Set to FALSE: MOUN-
TAIN, WARM_START,
FULL_ZS_FILTER,
CPLOCN2ATM,
CDEPS_DOCN Set
to TRUE: EXTER-
NAL_IC, NGGPS_IC,
REGIONAL, CPLFLX,
CPLWAV, CPLWAV2ATM,
CPL_IMP_MRG Set to
VALUE: Also, see ex-
port_hafs_regional then
export_hafs default values.

2019-
08-
29
00:00:00

6 OUT-
PUT_GRID=regional_latlon
Grid
Pa-
ram-
e-
ters:
IN-
PES=20,
JN-
PES=12,
NPX=721,
NPY=601,
NPZ=91,
NPZP=$(($NPZ
+
1))

FIELD_TABLE=field_table_hafs
DIAG_TABLE=diag_table_hafs_template
IN-
PUT_NML=input_regional_hafs.nml.IN
MODEL_CONFIGURE=”model_configure_hafs.IN”
UFS_CONFIGURE=”ufs.configure.hafs_atm_wav.IN”
FV3_RUN=”hafs_fv3_run.IN
hafs_ww3_run.IN”

RESTART_INTERVAL=1,
atm_omp_num_threads=2,
WARM_START=.false.,
READ_INCREMENT=.false.,
RES_LATLON_DYNAMICS=“‘fv3_increment.nc’”

hafs_regional_datm_cdeps Com-
pare
HAFS
re-
gional
cou-
pled
CDEPS
data
at-
mo-
sphere
from
ERA5
with
re-
gional
HY-
COM
re-
sults
with
pre-
vi-
ous
trunk
ver-
sion

N/A: No active
atmospheric
component

Set to FALSE: CPLWAV,
CDEPS_DOCN Set
to TRUE: Set to
VALUE: Also, see ex-
port_hafs_datm_cdeps then
export_hafs_regional then
export_hafs default values.

2019-
08-
29
00:00:00

24 OUT-
PUT_GRID=regional_latlon
Grid
Pa-
ram-
e-
ters:
IN-
PES=$INPES_dflt,
JN-
PES=$JNPES_dflt

FIELD_TABLE=field_table_hafs
DIAG_TABLE=diag_table_hafs
IN-
PUT_NML=input_regional_hafs.nml.IN
MODEL_CONFIGURE=”model_configure_hafs.IN”
UFS_CONFIGURE=”ufs.configure.hafs_atm_ocn.IN”
FV3_RUN=”hafs_datm_cdeps_era5.IN
hy-
com_hat10_run.IN”
DATM_STREAM_CONFIGURE=hafs_datm.streams.era5.IN

RESTART_INTERVAL=1,
atm_omp_num_threads=2,
WARM_START=.false.,
READ_INCREMENT=.false.,
RES_LATLON_DYNAMICS=“‘fv3_increment.nc’”

hafs_regional_docn Com-
pare
HAFS
re-
gional
cou-
pled
with
re-
gional
data
ocean
from
MOM6
re-
sults
with
pre-
vi-
ous
trunk
ver-
sion

Suite:
CCPP_SUITE=”FV3_HAFS_v1_gfdlmp_tedmf_nonsst”
Microphysics:
IMP_PHYSICS=11
Time Step:
DT_ATMOS=180

Set to FALSE: MOUN-
TAIN, WARM_START,
FULL_ZS_FILTER,
CPLWAV, CPLWAV2ATM
Set to TRUE: EX-
TERNAL_IC, NG-
GPS_IC, REGIONAL,
CPLFLX, CPLOCN2ATM,
CPL_IMP_MRG Set to
VALUE: Also, see ex-
port_hafs_docn_cdeps then
export_hafs_regional then
export_hafs default values.

2019-
08-
29
00:00:00

24 OUT-
PUT_GRID=regional_latlon
Grid
Pa-
ram-
e-
ters:
IN-
PES=20,
JN-
PES=12,
NPX=721,
NPY=601,
NPZ=91,
NPZP=$(($NPZ
+
1))

FIELD_TABLE=field_table_hafs
DIAG_TABLE=diag_table_hafs_template
IN-
PUT_NML=input_regional_hafs.nml.IN
MODEL_CONFIGURE=”model_configure_hafs.IN”
UFS_CONFIGURE=”ufs.configure.hafs_atm_docn.IN”
FV3_RUN=”hafs_fv3_run.IN
hafs_docn_cdeps_mom6.IN”
DOCN_STREAM_CONFIGURE=hafs_docn.streams.IN

RESTART_INTERVAL=1,
atm_omp_num_threads=2,
WARM_START=.false.,
READ_INCREMENT=.false.,
RES_LATLON_DYNAMICS=“‘fv3_increment.nc’”

hafs_regional_docn_oisst Com-
pare
HAFS
re-
gional
cou-
pled
with
global
data
ocean
from
OISST
re-
sults
with
pre-
vi-
ous
trunk
ver-
sion

Suite:
CCPP_SUITE=FV3_HAFS_v1_gfdlmp_tedmf_nonsst
Microphysics:
IMP_PHYSICS=11
Time Step:
DT_ATMOS=180

Set to FALSE: MOUN-
TAIN, WARM_START,
FULL_ZS_FILTER,
CPLWAV, CPLWAV2ATM
Set to TRUE: EX-
TERNAL_IC, NG-
GPS_IC, REGIONAL,
CPLFLX, CPLOCN2ATM,
CPL_IMP_MRG Set to
VALUE: Also, see ex-
port_hafs_docn_cdeps then
export_hafs_regional then
export_hafs default values.

2019-
08-
29
00:00:00

6 OUT-
PUT_GRID=regional_latlon
Grid
Pa-
ram-
e-
ters:
IN-
PES=20,
JN-
PES=12,
NPX=721,
NPY=601,
NPZ=91,
NPZP=$(($NPZ
+
1))

FIELD_TABLE=field_table_hafs
DIAG_TABLE=diag_table_hafs_template
IN-
PUT_NML=input_regional_hafs.nml.IN
MODEL_CONFIGURE=”model_configure_hafs.IN”
UFS_CONFIGURE=”ufs.configure.hafs_atm_docn.IN”
FV3_RUN=”hafs_fv3_run.IN
hafs_docn_cdeps_oisst.IN”
DOCN_STREAM_CONFIGURE=hafs_docn.streams.IN

RESTART_INTERVAL=1,
atm_omp_num_threads=2,
WARM_START=.true.,
READ_INCREMENT=.false.,
RES_LATLON_DYNAMICS=“‘fv3_increment.nc’”

hafs_regional_specified_moving_1nest_atmCom-
pare
HAFS
re-
gional
with
1
spec-
i-
fied
mov-
ing
nest
and
at-
mo-
sphere
only
re-
sults
with
pre-
vi-
ous
trunk
ver-
sion

Suite:
CCPP_SUITE=”FV3_HAFS_v1_gfdlmp_tedmf”
Microphysics:
IMP_PHYSICS=11
Time Step:
DT_ATMOS=180

Set to FALSE: MOUN-
TAIN, WARM_START,
FULL_ZS_FILTER,
IS_MOVING_NEST=”.false.,.true.”,
CPLFLX, CPLWAV,
CPLWAV2ATM,
CPL_IMP_MRG, CMEPS,
USE_COLDSTART Set to
TRUE: WRITE_DOPOST,
EXTERNAL_IC, NG-
GPS_IC, REGIONAL,
CPLOCN2ATM Set to
VALUE: Also, see ex-
port_hafs default values.

2020-
08-
25
12:00:00

6 OUT-
PUT_GRID=rotated_latlon,
OUT-
PUT_GRID_2=rotated_latlon_moving
Grid
Pa-
ram-
e-
ters:
IN-
PES=6,
JN-
PES=10,
NPX=241,
NPY=241,
NPZ=64,
NPZP=$(($NPZ
+
1)),
IN-
PES_NEST02=6,
JN-
PES_NEST02=10,
NPX_NEST02=361,
NPY_NEST02=361

FIELD_TABLE=field_table_hafs
DIAG_TABLE=diag_table_hafs_template
IN-
PUT_NML=input_regional_hafs.nml.IN
IN-
PUT_NEST02_NML=input_nest_hafs.nml.IN
MODEL_CONFIGURE=”model_configure_hafs.IN”
UFS_CONFIGURE=”ufs.configure.hafs_atm.IN”
FV3_RUN=”hafs_fv3_run.IN”

RESTART_INTERVAL=1,
atm_omp_num_threads=2,
WARM_START=.false.,
READ_INCREMENT=.false.,
RES_LATLON_DYNAMICS=“‘fv3_increment.nc’”

hafs_regional_storm_following_1nest_atmCom-
pare
HAFS
re-
gional
with
1
storm-
following
mov-
ing
nest
and
at-
mo-
sphere
only
re-
sults
with
pre-
vi-
ous
trunk
ver-
sion

Suite:
CCPP_SUITE=”FV3_HAFS_v1_gfdlmp_tedmf”
Microphysics:
IMP_PHYSICS=11
Time Step:
DT_ATMOS=180

Set to FALSE: MOUN-
TAIN, WARM_START,
FULL_ZS_FILTER,
IS_MOVING_NEST=”.false.,.true.”,
CPLFLX, CPLWAV,
CPLWAV2ATM,
CPL_IMP_MRG, CMEPS,
USE_COLDSTART Set to
TRUE: EXTERNAL_IC,
NGGPS_IC, REGIONAL,
CPLOCN2ATM Set to
VALUE: Also, see ex-
port_hafs default values.

2020-
08-
25
12:00:00

6 OUT-
PUT_GRID=rotated_latlon,
OUT-
PUT_GRID_2=rotated_latlon_moving
Grid
Pa-
ram-
e-
ters:
IN-
PES=6,
JN-
PES=10,
NPX=241,
NPY=241,
NPZ=64,
NPZP=$(($NPZ
+
1)),
IN-
PES_NEST02=6,
JN-
PES_NEST02=10,
NPX_NEST02=361,
NPY_NEST02=361

FIELD_TABLE=field_table_hafs
DIAG_TABLE=diag_table_hafs_template
IN-
PUT_NML=input_regional_hafs.nml.IN
IN-
PUT_NEST02_NML=input_nest_hafs.nml.IN
MODEL_CONFIGURE=”model_configure_hafs.IN”
UFS_CONFIGURE=”ufs.configure.hafs_atm.IN”
FV3_RUN=”hafs_fv3_run.IN”

RESTART_INTERVAL=1,
atm_omp_num_threads=2,
WARM_START=.false.,
READ_INCREMENT=.false.,
RES_LATLON_DYNAMICS=“‘fv3_increment.nc’”

hafs_regional_storm_following_1nest_atm_ocnCom-
pare
HAFS
re-
gional
with
1
storm-
following
mov-
ing
nest
and
atmosphere-
ocean
cou-
pled
re-
sults
with
pre-
vi-
ous
trunk
ver-
sion

Suite:
CCPP_SUITE=”FV3_HAFS_v1_gfdlmp_tedmf_nonsst”
Microphysics:
IMP_PHYSICS=11
Time Step:
DT_ATMOS=180

Set to FALSE: MOUN-
TAIN, WARM_START,
FULL_ZS_FILTER,
IS_MOVING_NEST=”.false.,.true.”,
CPLWAV, CPLWAV2ATM,
USE_COLDSTART,
CDEPS_DOCN Set to
TRUE: EXTERNAL_IC,
NGGPS_IC, REGIONAL,
CPLFLX, CPLOCN2ATM,
CPL_IMP_MRG Set to
VALUE: Also, see ex-
port_hafs_regional default
values then export_hafs.

2020-
08-
25
12:00:00

6 OUT-
PUT_GRID=regional_latlon,
OUT-
PUT_GRID_2=regional_latlon_moving
Grid
Pa-
ram-
e-
ters:
IN-
PES=6,
JN-
PES=10,
NPX=241,
NPY=241,
NPZ=64,
NPZP=$(($NPZ
+
1)),
IN-
PES_NEST02=6,
JN-
PES_NEST02=10,
NPX_NEST02=361,
NPY_NEST02=361

FIELD_TABLE=field_table_hafs
DIAG_TABLE=diag_table_hafs_template
IN-
PUT_NML=input_regional_hafs.nml.IN
IN-
PUT_NEST02_NML=input_nest_hafs.nml.IN
MODEL_CONFIGURE=”model_configure_hafs.IN”
UFS_CONFIGURE=”ufs.configure.hafs_atm_ocn.IN”
FV3_RUN=”hafs_fv3_run.IN
hy-
com_hat10_run.IN”

RESTART_INTERVAL=1,
atm_omp_num_threads=2,
WARM_START=.false.,
READ_INCREMENT=.false.,
RES_LATLON_DYNAMICS=“‘fv3_increment.nc’”

hafs_regional_storm_following_1nest_atm_ocn_debugCom-
pare
HAFS
re-
gional
with
1
storm-
following
mov-
ing
nest
and
atmosphere-
ocean
cou-
pled
re-
sults
with
pre-
vi-
ous
trunk
ver-
sion

Suite:
CCPP_SUITE=”FV3_HAFS_v1_gfdlmp_tedmf_nonsst”
Microphysics:
IMP_PHYSICS=11
Time Step:
DT_ATMOS=180

Set to FALSE: MOUN-
TAIN, WARM_START,
FULL_ZS_FILTER,
IS_MOVING_NEST=”.false.,.true.”,
CPLWAV, CPLWAV2ATM,
USE_COLDSTART,
CDEPS_DOCN Set to
TRUE: EXTERNAL_IC,
NGGPS_IC, REGIONAL,
CPLFLX, CPLOCN2ATM,
CPL_IMP_MRG Set to
VALUE: Also, see ex-
port_hafs_regional default
values then export_hafs.

2020-
08-
25
12:00:00

6 OUT-
PUT_GRID=regional_latlon,
OUT-
PUT_GRID_2=regional_latlon_moving
Grid
Pa-
ram-
e-
ters:
IN-
PES=6,
JN-
PES=10,
NPX=241,
NPY=241,
NPZ=64,
NPZP=$(($NPZ
+
1)),
IN-
PES_NEST02=6,
JN-
PES_NEST02=10,
NPX_NEST02=361,
NPY_NEST02=361

FIELD_TABLE=field_table_hafs
DIAG_TABLE=diag_table_hafs_template
IN-
PUT_NML=input_regional_hafs.nml.IN
IN-
PUT_NEST02_NML=input_nest_hafs.nml.IN
MODEL_CONFIGURE=”model_configure_hafs.IN”
UFS_CONFIGURE=”ufs.configure.hafs_atm_ocn.IN”
FV3_RUN=”hafs_fv3_run.IN
hy-
com_hat10_run.IN”

RESTART_INTERVAL=1,
atm_omp_num_threads=2,
WARM_START=.false.,
READ_INCREMENT=.false.,
RES_LATLON_DYNAMICS=“‘fv3_increment.nc’”

hafs_regional_storm_following_1nest_atm_ocn_debugCom-
pare
HAFS
re-
gional
with
1
storm-
following
mov-
ing
nest
and
atmosphere-
ocean
cou-
pled
re-
sults
with
pre-
vi-
ous
trunk
ver-
sion

Suite:
CCPP_SUITE=”FV3_HAFS_v1_gfdlmp_tedmf_nonsst”
Microphysics:
IMP_PHYSICS=11
Time Step:
DT_ATMOS=180

Set to FALSE: MOUN-
TAIN, WARM_START,
FULL_ZS_FILTER,
IS_MOVING_NEST=”.false.,.true.”,
CPLWAV2ATM,
USE_COLDSTART,
CDEPS_DOCN Set to
TRUE: EXTERNAL_IC,
NGGPS_IC, REGIONAL,
CPLFLX, CPLOCN2ATM,
CPL_IMP_MRG Set to
VALUE: Also, see ex-
port_hafs_regional default
values then export_hafs.

2020-
08-
25
12:00:00

6 OUT-
PUT_GRID=regional_latlon,
OUT-
PUT_GRID_2=regional_latlon_moving
Grid
Pa-
ram-
e-
ters:
IN-
PES=$INPES_thrd,
JN-
PES=$JNPES_thrd,
IN-
PES=6,
JN-
PES=10,
NPX=241,
NPY=241,
NPZ=64,
NPZP=$(($NPZ
+
1))

FIELD_TABLE=field_table_hafs
DIAG_TABLE=diag_table_hafs_template
IN-
PUT_NML=input_regional_hafs.nml.IN
IN-
PUT_NEST02_NML=input_nest_hafs.nml.IN
MODEL_CONFIGURE=”model_configure_hafs.IN”
UFS_CONFIGURE=”ufs.configure.hafs_atm_ocn.IN”
FV3_RUN=”hafs_fv3_run.IN
hy-
com_hat10_run.IN”

RESTART_INTERVAL=1,
atm_omp_num_threads=2,
WARM_START=.false.,
READ_INCREMENT=.false.,
RES_LATLON_DYNAMICS=“‘fv3_increment.nc’”

hafs_regional_storm_following_1nest_atm_ocn_wavCom-
pare
HAFS
re-
gional
with
1
storm-
following
mov-
ing
nest
and
atmosphere-
ocean-
wave
cou-
pled
re-
sults
with
pre-
vi-
ous
trunk
ver-
sion

Suite:
CCPP_SUITE=”FV3_HAFS_v1_gfdlmp_tedmf_nonsst”
Microphysics:
IMP_PHYSICS=11
Time Step:
DT_ATMOS=180

Set to FALSE: MOUN-
TAIN, WARM_START,
FULL_ZS_FILTER,
IS_MOVING_NEST=”.false.,.true.”,
CPLWAV2ATM,
USE_COLDSTART,
CDEPS_DOCN Set to
TRUE: EXTERNAL_IC,
NGGPS_IC, REGIONAL,
CPLFLX, CPLOCN2ATM,
CPLWAV, CPL_IMP_MRG
Set to VALUE: Also,
see export_hafs_regional
default values then ex-
port_hafs.

2020-
08-
25
12:00:00

6 OUT-
PUT_GRID=rotated_latlon,
OUT-
PUT_GRID_2=rotated_latlon
Grid
Pa-
ram-
e-
ters:
IN-
PES=6,
JN-
PES=10,
NPX=241,
NPY=241,
NPZ=64,
NPZP=$(($NPZ
+
1)),
IN-
PES_NEST02=6,
JN-
PES_NEST02=10,
NPX_NEST02=361,
NPY_NEST02=361

FIELD_TABLE=field_table_hafs
DIAG_TABLE=diag_table_hafs_template
IN-
PUT_NML=input_regional_hafs.nml.IN
IN-
PUT_NEST02_NML=input_nest_hafs.nml.IN
MODEL_CONFIGURE=”model_configure_hafs.IN”
UFS_CONFIGURE=”ufs.configure.hafs_atm_ocn_wav.IN”
FV3_RUN=”hafs_fv3_run.IN
hy-
com_hat10_run.IN
hafs_ww3_run.IN”

RESTART_INTERVAL=1,
atm_omp_num_threads=2,
WARM_START=.false.,
READ_INCREMENT=.false.,
RES_LATLON_DYNAMICS=“‘fv3_increment.nc’”

hafs_regional_telescopic_2nests_atmCom-
pare
HAFS
re-
gional
with
two
tele-
scopic
nests
and
at-
mo-
sphere
only
re-
sults
with
pre-
vi-
ous
trunk
ver-
sion

Suite:
CCPP_SUITE=”FV3_HAFS_v1_gfdlmp_tedmf”
Microphysics:
IMP_PHYSICS=11
Time Step:
DT_ATMOS=90

Set to FALSE: MOUN-
TAIN, WARM_START,
FULL_ZS_FILTER,
CPLFLX, CPLWAV,
CPLWAV2ATM, CMEPS,
USE_COLDSTART Set to
TRUE: EXTERNAL_IC,
NGGPS_IC, REGIONAL,
CPLOCN2ATM Set to
VALUE: Also, see ex-
port_hafs default values.

2020-
08-
25
12:00:00

6 OUT-
PUT_GRID=rotated_latlon,
OUT-
PUT_GRID_2=lambert_conformal,
OUT-
PUT_GRID_3=regional_latlon
Grid
Pa-
ram-
e-
ters:
IN-
PES=6,
JN-
PES=10,
NPX=241,
NPY=241,
NPZ=64,
NPZP=$(($NPZ
+
1)),
IN-
PES_NEST02=6,
JN-
PES_NEST02=10,
NPX_NEST02=361,
NPY_NEST02=361,
IN-
PES_NEST03=6,
JN-
PES_NEST03=10,
NPX_NEST03=361,
NPY_NEST03=361

FIELD_TABLE=field_table_hafs
DIAG_TABLE=diag_table_hafs_template
IN-
PUT_NML=input_regional_hafs.nml.IN
IN-
PUT_NEST02_NML=input_nest_hafs.nml.IN
IN-
PUT_NEST03_NML=input_nest_hafs.nml.IN
MODEL_CONFIGURE=”model_configure_hafs.IN”
UFS_CONFIGURE=”ufs.configure.hafs_atm.IN”
FV3_RUN=”hafs_fv3_run.IN”

RESTART_INTERVAL=1,
atm_omp_num_threads=2,
WARM_START=.false.,
READ_INCREMENT=.false.,
RES_LATLON_DYNAMICS=“‘fv3_increment.nc’”

5.7. Hurricane Analysis and Reforecast System Configurations 69

https://dtcenter.ucar.edu/GMTB/v6.0.0/sci_doc/_c_c_p_psuite_nml_desp.html
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/hafs_global_1nest_atm
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/hafs_global_multiple_4nests_atm
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/hafs_global_storm_following_1nest_atm
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/hafs_regional_1nest_atm
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/hafs_regional_atm
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/hafs_regional_atm_ocn
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/hafs_regional_atm_ocn_wav
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/hafs_regional_atm_thompson_gfdlsf
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/hafs_regional_atm_wav
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/hafs_regional_datm_cdeps
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/hafs_regional_docn
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/hafs_regional_docn_oisst
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/hafs_regional_specified_moving_1nest_atm
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/hafs_regional_storm_following_1nest_atm
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/hafs_regional_storm_following_1nest_atm_ocn
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/hafs_regional_storm_following_1nest_atm_ocn_debug
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/hafs_regional_storm_following_1nest_atm_ocn_debug
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/hafs_regional_storm_following_1nest_atm_ocn_wav
https://github.com/ufs-community/ufs-weather-model/blob/develop/tests/tests/hafs_regional_telescopic_2nests_atm

UFS Weather Model Users Guide

Sample CMAKE_FLAGS Setting

export CMAKE_FLAGS="-DAPP=HAFS"

Supported Physics Suites

Table 5.15: Physics suites used in the HAFS configurations above

Physics Suite Description
FV3_HAFS_v1_gfdlmp_tedmfThe FV3_HAFS_v1_gfdlmp_tedmf physics suite is described in the CCPP documentation here.
FV3_HAFS_v1_gfdlmp_tedmf_nonsstThe FV3_HAFS_v1_gfdlmp_tedmf_nonsst physics suite is described in the CCPP documenta-

tion here.
FV3_HAFS_v1_thompson_tedmf_gfdlsfThe FV3_HAFS_v1_thompson_tedmf_gfdlsf physics suite is described in the CCPP documen-

tation here.

70 Chapter 5. Configurations

https://dtcenter.ucar.edu/GMTB/v6.0.0/sci_doc/rap_suite_page.html
https://dtcenter.ucar.edu/GMTB/v6.0.0/sci_doc/_h_r_r_r_suite_page.html
https://dtcenter.ucar.edu/GMTB/v6.0.0/sci_doc/_r_r_f_s_v1beta_page.html

CHAPTER

SIX

CONFIGURATION PARAMETERS

6.1 Build Configuration Parameters

6.1.1 Configuration Options

-DAPP:
Sets the WM configuration to build. Valid values: ATM, ATMW, ATMAERO, ATMAQ, S2S, S2SA, S2SW, S2SWA,
NG-GODAS, HAFS, HAFSW, HAFS-ALL

6.1.2 Physics Options

-DCCPP_SUITES:
Sets the physics suites that will be made available when the WM is built.

Physics suites supported in regression testing:

FV3_GFS_cpld_rasmgshocnsstnoahmp_ugwp

FV3_GFS_v15p2

FV3_GFS_v15_thompson_mynn

FV3_GFS_v15_thompson_mynn_lam3km

FV3_GFS_v16

FV3_GFS_v16_csawmg

FV3_GFS_v16_fv3wam

FV3_GFS_v16_noahmp

FV3_GFS_v16_ras

FV3_GFS_v16_ugwpv1

FV3_GFS_v17_p8

FV3_GFS_v17_p8_rrtmgp

FV3_GFS_v17_coupled_p8

FV3_GFS_v17_coupled_p8_sfcocn

FV3_HAFS_v0_gfdlmp_tedmf

FV3_HAFS_v0_gfdlmp_tedmf_nonsst

FV3_HAFS_v0_thompson_tedmf_gfdlsf

FV3_HRRR

FV3_HRRR_smoke

FV3_RAP

71

UFS Weather Model Users Guide

FV3_RAP_RRTMGP

FV3_RAP_sfcdiff

FV3_RRFS_v1beta

FV3_RRFS_v1nssl

Other valid values:

FV3_CPT_v0

FV3_GFS_2017

FV3_GFS_2017_csawmg

FV3_GFS_2017_csawmgshoc

FV3_GFS_2017_gfdlmp

FV3_GFS_2017_gfdlmp_noahmp

FV3_GFS_2017_gfdlmp_regional

FV3_GFS_2017_gfdlmp_regional_c768

FV3_GFS_2017_h2ophys

FV3_GFS_2017_myj

FV3_GFS_2017_ntiedtke

FV3_GFS_2017_ozphys_2015

FV3_GFS_2017_sas

FV3_GFS_2017_satmedmf

FV3_GFS_2017_satmedmfq

FV3_GFS_2017_shinhong

FV3_GFS_2017_stretched

FV3_GFS_2017_ysu

FV3_GFS_cpld_rasmgshoc

FV3_GFS_cpld_rasmgshocnsst

FV3_GFS_cpld_rasmgshocnsst_flake

FV3_GFS_cpld_rasmgshocnsst_ugwp

FV3_GFS_cpldnst_rasmgshoc

FV3_GFS_rasmgshoc

FV3_GFS_v15

FV3_GFS_v15_gf

FV3_GFS_v15_gf_thompson

FV3_GFS_v15_mynn

FV3_GFS_v15_ras

FV3_GFS_v15_rasmgshoc

FV3_GFS_v15_thompson

FV3_GFS_v15p2_no_nsst

FV3_GFS_v15plus

FV3_GFS_v15plusras

FV3_GFS_v16_coupled

FV3_GFS_v16_coupled_noahmp

FV3_GFS_v16_coupled_nsstNoahmp

FV3_GFS_v16_coupled_nsstNoahmpUGWPv1

FV3_GFS_v16_coupled_p8

72 Chapter 6. Configuration Parameters

UFS Weather Model Users Guide

FV3_GFS_v16_coupled_p8_sfcocn

FV3_GFS_v16_couplednsst

FV3_GFS_v16_flake

FV3_GFS_v16_no_nsst

FV3_GFS_v16_nsstNoahmpUGWPv1

FV3_GFS_v16_p8

FV3_GFS_v16_thompson

FV3_GFSv17alp_cpldnsstrasnoahmp

FV3_GFSv17alp_cpldnsstrasugwpnoahmp

FV3_GFSv17alp_cpldnsstsasugwpnoahmp

FV3_GFSv17alpha_cpldnsstras

FV3_GFSv17alpha_cpldnsstras_flake

FV3_GFSv17alpha_cpldnsstras_ugwp

FV3_GFSv17alpha_cpldnsstrasnoshal

FV3_GFSv17alpha_cpldnsstsas

FV3_GFSv17alpha_cpldnsstsas_ugwp

FV3_GFSv17alpha_ras

FV3_GFSv17alpha_ras_flake

FV3_GFSv17alpha_ras_ugwp

FV3_GFSv17alpha_sas

FV3_RAP_cires_ugwp

FV3_RAP_flake

FV3_RAP_noah

FV3_RAP_noah_sfcdiff_cires_ugwp

FV3_RAP_noah_sfcdiff_ugwpv1

FV3_RAP_noah_sfcdiff_unified_ugwp

FV3_RAP_unified_ugwp

FV3_RRFS_v1alpha

6.1.3 Other Build Options

-DCMEPS_AOFLUX: (Default: OFF)
Enables atmosphere-ocean flux calculation in mediator. Valid values: ON | OFF

-DDEBUG: (Default: OFF)
Enables DEBUG mode. Valid values: ON | OFF

-D32BIT: (Default: OFF)
Enables 32-bit, single precision arithmetic in dycore and fast physics. Valid values: ON | OFF

-DCCPP_32BIT: (Default: OFF)
Enables 32-bit, single precision arithmetic in slow physics. Valid values: ON | OFF

-DMOVING_NEST: (Default: OFF)
Enables moving nest code. Valid values: ON | OFF

-DMULTI_GASES: (Default: OFF)
Enable MULTI_GASES. Valid values: ON | OFF

6.1. Build Configuration Parameters 73

UFS Weather Model Users Guide

74 Chapter 6. Configuration Parameters

CHAPTER

SEVEN

AUTOMATED TESTING

The UFS Weather Model repository on GitHub employs two types of automated testing:

1. CI/CD (Continuous Integration/Continuous Development) testing on the cloud

2. AutoRT on NOAA R&D platforms

Both are application level tests and utilize the regression testing framework discussed in Section 3.6.1.

7.1 CI/CD

The UFS Weather Model (WM) uses GitHub Actions (GHA), a GitHub-hosted continuous integration service, to per-
form CI/CD testing. Build jobs are done on GHA-provided virtual machines. Test jobs are performed on the Amazon
Web Services (AWS) cloud platform using a number of EC2 instances. Builds and tests are carried out in a Docker
container. The container includes a pre-installed version of the HPC-Stack, which includes all prerequisite libraries.
Input data needed to run the tests are stored as a separate Docker container.

When a developer makes a pull request (PR) to the UFS WM repository, a code manager may add the run-ci label,
which triggers the CI/CD workflow. The CI/CD workflow then executes the following steps:

1. A check is performed to make sure the UFS Weather Model and its first level subcomponents are up to date with
the top of the develop branch.

2. If the check is successful, build jobs are started on GHA-provided virtual machines by downloading the HPC-
Stack Docker container stored in Docker Hub.

3. Once all build jobs are successful, the created executable files are stored as artifacts in GHA.

4. A number of AWS EC2 instances are started.

5. Test jobs are started on AWS after downloading the HPC-Stack Docker container, the executable file from the
build job, and the input-data Docker container.

6. When all tests are complete, EC2 instances are stopped. Test results are reported on GitHub.

The GHA-related yaml scripts are located in the .github/workflows/ directory. build_test.yml is the main
workflow file, and aux.yml is an auxiliary file responsible for (1) checking that the PR branch is up-to-date and (2)
starting/stopping the EC2 instances.

Other CI-related scrips are located in the tests/ci/ directory. ci.sh is the main script that invokes Docker build and
run. Dockerfile is used to build the UFS Weather Model. Other shell and python scripts help with various tasks. For
example:

• repo_check.sh checks that the PR branch is up-to-date.

• check_status.py checks the status of EC2 instances.

• setup.py and ci.test configure the test cases to execute in the CI/CD workflow.

75

UFS Weather Model Users Guide

7.2 Auto RT

The Automated Regression Testing (AutoRT) system is a python program that automates the process of regression
testing on NOAA HPC platforms. It contains the files in Table 7.1 below:

Table 7.1: Files for Automated Regression Testing (AutoRT) system

File Name Description
start_rt_auto.sh Verifies HPC name, sets the python paths
rt_auto.py Python interface between the HPC and the github API
jobs/bl.py Functions for the baseline job
jobs/rt.py Functions for the regression test job

7.2.1 AutoRT Workflow

On supported HPC systems, a cron job runs the start_rt_auto.sh bash script every 15 minutes. This script checks
the HPC name and sets certain python paths. Then, it runs rt_auto.py, which uses the Github API (through pyGitHub)
to check the labels on pull requests to ufs-weather-model. If a PR label matches the HPC name (e.g., hera-intel-RT
or derecho-gnu-BL), the label provides the HPC with the compiler and job information to run a test or task on the
machine. If no PR label matches HPC name, the script exits.

For example, a PR labeled gaea-intel-BL will be recognized by the HPC machine ‘Gaea’. It will set the
RT_COMPILER variable to ‘intel’ and run the baseline creation script (bl.py). This script creats a job class that con-
tains all information from the machine that the job will need to run. That information is sent into the jobs/rt[bl].py
script.

rt.py sets directories for storage, gets repo information, runs the regression test, and completes any required post
processing.

def run(job_obj):
logger = logging.getLogger('RT/RUN')
workdir = set_directories(job_obj)
branch, pr_repo_loc, repo_dir_str = clone_pr_repo(job_obj, workdir)
run_regression_test(job_obj, pr_repo_loc)
post_process(job_obj, pr_repo_loc, repo_dir_str, branch)

bl.py: (similar to rt.py) Adds functionality to create baselines before running regression testing.

def run(job_obj):
logger = logging.getLogger('BL/RUN')
workdir, rtbldir, blstore = set_directories(job_obj)
pr_repo_loc, repo_dir_str = clone_pr_repo(job_obj, workdir)
bldate = get_bl_date(job_obj, pr_repo_loc)
bldir = f'{blstore}/develop-{bldate}/{job_obj.compiler.upper()}'
bldirbool = check_for_bl_dir(bldir, job_obj)
run_regression_test(job_obj, pr_repo_loc)
post_process(job_obj, pr_repo_loc, repo_dir_str, rtbldir, bldir)

76 Chapter 7. Automated Testing

CHAPTER

EIGHT

FAQ

8.1 How do I build and run a single test of the UFS Weather Model?

An efficient way to build and run the UFS Weather Model is to use the regression test (rt.sh). This script is widely
used by model developers on Tier 1 and 2 platforms and is described in the UFS WM GitHub wiki. The advantages to
this approach are:

• It does not require a workflow, pre- or post-processing steps.

• The batch submission script is generated.

• Any required input data is already available for machines used by the regression test.

• Once the rt.sh test completes, you will have a working copy in your run directory where you can make modi-
fications to the namelist and other files, and then re-run the executable.

The steps are:

1. Clone the source code and all the submodules as described in Section 3.4, then go into the tests directory:

cd ufs-weather-model (or the top level where you checked out the code)
cd tests

2. Find a configure (*.conf) file that contains the machine and compiler you are using. For this example, the Intel
compiler on Derecho is used. To create a custom configure file, two lines are needed: a COMPILE line and a
RUN line. The COMPILE line should contain the name of the machine and compiler derecho.intel and the
desired SUITES for the build. Choose a RUN line under this COMPILE command that uses the desired SUITE. For
example:

COMPILE | 32BIT=Y CCPP=Y STATIC=Y SUITES=FV3_GFS_v15p2,FV3_GFS_v16beta,FV3_GFS_
→˓v15p2_no_nsst,FV3_GFS_v16beta_no_nsst | standard | derecho.
→˓intel | fv3
RUN | fv3_ccpp_gfs_v16beta ␣
→˓ | standard | ␣
→˓ | fv3 |

Put these two lines into a file called my_test.conf. The parameters used in this run can be found in the
fv3_ccpp_gfs_v16beta file in the ufs-weather-model/tests/tests directory.

Note: These two lines are long and may not appear in entirety in your browser. Scroll to the right to see the
entire line.

3. Modify the rt.sh script to put the output in a run directory where you have write permission:

77

https://github.com/ufs-community/ufs-weather-model/wiki/Making-code-changes-in-the-UFS-weather-model-and-its-subcomponents

UFS Weather Model Users Guide

if [[$MACHINE_ID = derecho.*]]; then stanza:
...
dprefix=/glade/scratch

This works for Derecho, since $USER/FV3_RT will be appended. Also check that RTPWD points to a diretory that
exists:

if [[$MACHINE_ID = derecho.*]]; then
RTPWD=${RTPWD:-$DISKNM/ufs-public-release-20200224/${COMPILER^^}}

4. Run the rt.sh script from the tests directory:

./rt.sh -k -l my_test.conf >& my_test.out &

Check my_test.out for build and run status, plus other standard output. Check /glade/scratch/$USER/
FV3_RT/rt_PID for the model run, where PID is a process ID. The build will take about 10-15 minutes
and the run will be fast, depending on how long it waits in the queue. A message "REGRESSION TEST WAS
SUCCESSFUL" will be written to this file, along with other entertainment: 'Elapsed time: 00h:14m:12s.
Have a nice day!'.

5. When the build and run are complete, modify the namelist or model_configure files and re-run by submitting
the job_card file:

qsub job_card

8.2 How do I change the length of the model run?

In your run directory, there is a file named model_configure. Change the variable nhours_fcst to the desired
number of hours.

8.3 How do I set the output history interval?

The interval at which output (history) files are written is controlled in two places, and depends on whether you are using
the write component to generate your output files. Table 8.1 describes the relevant variables. If the write_component
is used, then the variables listed as model_configure are required. It is however, also required that the settings in
input.nml match those same settings in model_configure. If these settings are inconsistent, then unpredictable
output files and intervals may occur!

78 Chapter 8. FAQ

UFS Weather Model Users Guide

Table 8.1: Namelist variables used to control the output file frequency.

Namelist variable Location Default Value Description
fdiag input.nml 0 Array with dimension maxhr = 4096 listing the di-

agnostic output times (in hours) for the GFS physics.
This can either be a list of times after initialization,
or an interval if only the first entry is nonzero. The
default setting of 0 will result in no outputs.

fhmax input.nml 384 The maximal forecast time for output.
fhmaxhf input.nml 120 The maximal forecast hour for high frequency out-

put.
fhout input.nml 3 Output frequency during forecast time from 0 to

fhmax, or from fhmaxhf to fhmax if fhmaxf>0.
fhouthf input.nml 1 The high frequency output frequency during the

forecast time from 0 to fhmaxhf hour.
nfhmax_hf model_configure 0 forecast length of high history file
nfhout_hf model_configure 1 high history file output frequency
nfhout model_configure 3 history file output frequency

8.4 How do I turn off IO for the components of the coupled model?

8.4.1 FV3atm restart and history files

To turn off FV3atm restart files, set the restart_interval in model_configure to a value greater than the forecast
length.

To turn off history files, in model_configure there are two options:

• Set quilting to .false., then in diag_table, remove the history output file definitions fv3_history and
fv3_history2d and the associated fields. This will turn off the write_grid component and the number of tasks
used by FV3atm must also be adjusted to remove the tasks assigned to the write grid component.

• Set quilting to .true., then in model_configure set write_dopost to .false. and set output_fh to a value
greater than the forecast length. This will turn off the writing of output but the write grid component tasks will
still be necessary.

8.4.2 MOM6, CICE6 and CMEPS restart files

In ufs.configure, set the ALLCOMP_attribute restart_n to a value greater than the forecast length.

8.4.3 MOM6 history files

In the diag_table file, remove the ocn and SST history output file definitions and fields.

MOM6 history output speed can also be increased by setting the IO_LAYOUT parameter in INPUT/MOM_input.

IO_LAYOUT = 4,2

8.4. How do I turn off IO for the components of the coupled model? 79

UFS Weather Model Users Guide

8.4.4 CICE history files

In the CICE namelist ice_in, set the histfreq to none with

histfreq = 'x','x','x','x','x'

The initial condition file can be turned off using

write_ic = .false.

8.4.5 GOCART history files

In AERO_HISTORY.rc, remove all the fields listed in COLLECTIONS

COLLECTIONS:
::

8.4.6 WW3 history and restart files

In ww3_shel.inp, change the output interval for gridded frequency from 3600 to 0 on line 68. To turn off point output,
change the output frequency from 900 to 0 on line 296. To turn off restart files, change the frequency from 3600 to 0
on line 321.

8.5 How do I set the total number of tasks for my job?

In the UFS WM, each component’s MPI task information, including the starting and ending tasks and the number of
threads, are specified using the component-specific petlist_bounds and omp_num_threads in ufs.configure. In
general, the total number of MPI tasks required is the sum of all the sub-component tasks, as long as those components
do not overlap (i.e., share the same PETs). An example of a global 5 component coupled configuration ufs.configure
at the end of this section.

8.5.1 FV3atm

The FV3atm component consists of one or more forecast grid components and write grid components.

The MPI tasks for the forecast grid components are specified in the layout variable in one or more namelist files input*.
nml (e.g. input.nml and input_nest02.nml). The total number of mpi tasks required is given by the product of the
specified layout, summed over all domains. For example, for a global domain with 6 tiles and layout = 6,8, the total
number required is 6*6*8 = 288. For two regional domains using input.nml and input_nest02.nml, each with
layout = 6,10, the total required is the sum 6*10 + 6*10 = 120.

For the global configuration, an additional requirement is that the layout specified must be a multiple of the blocksize
parameter in input.nml. For example, using layout=8,8 for C96 yields subdomains of 12 x 12. The subdomain
product is 12*12 = 144, which is not divisible by a blocksize=32. Therefore, the C96 does not support an 8,
8 layout for a blocksize of 32. If layout = 4,6, the subdomain product is 24*16 = 384, which is divisible by a
blocksize=32. A layout of 4,6 is supported for C96 with a blocksize of 32.

The FV3atm will utilize the write grid component if quilting is set to .true. In this case, the required mpi
tasks for the write grid components is the product of the write_groups and the write_tasks_per_group in the
model_configure file.

80 Chapter 8. FAQ

https://github.com/NOAA-EMC/WW3/blob/5ebed915755da0b21cf4d20e21726411fb2948c4/model/inp/ww3_shel.inp#L68
https://github.com/NOAA-EMC/WW3/blob/5ebed915755da0b21cf4d20e21726411fb2948c4/model/inp/ww3_shel.inp#L296
https://github.com/NOAA-EMC/WW3/blob/5ebed915755da0b21cf4d20e21726411fb2948c4/model/inp/ww3_shel.inp#L321

UFS Weather Model Users Guide

quilting: .true.
write_groups: 1
write_tasks_per_group: 60

In the above case, the write grid component requires 60 tasks.

The total number of MPI ranks for FV3atm is the sum of the forecast tasks and any write grid component tasks.

total_tasks_atm = forecast tasks + write grid component tasks

If ESMF-managed threading is used, the total number of PETs for the atmosphere component is given by the product
of the number of threads requested and the total number of MPI ranks (both forecast and write grid component). If
num_threads_atm is the number of threads specified for the FV3atm component, in ufs.configure the ATM PET
bounds are given by

ATM_petlist_bounds 0 total_tasks_atm*num_threads_atm-1
ATM_omp_num_threads num_threads_atm

Note that in UWM, the ATM component is normally listed first in ufs.configure so that the starting PET for the
ATM is 0.

8.5.2 GOCART

GOCART shares the same grid and forecast tasks as FV3atm but it does not have a separate write grid component in its
NUOPC CAP. Also, while GOCART does not have threading capability, it shares the same data structure as FV3atm
and so it has to use the same number of threads used by FV3atm. Therefore, the total number of MPI ranks and threads
in GOCART is the same as the those for the FV3atm forecast component (i.e., excluding any write grid component).
Currently GOCART only runs on the global forecast grid component, for which only one namelist is needed.

total_tasks_chm = FV3atm forecast tasks

CHM_petlist_bounds: 0 total_tasks_chm*num_threads_atm-1
CHM_omp_num_threads: num_threads_atm

8.5.3 CMEPS

The mediator MPI tasks can overlap with other components and in UFS the tasks are normally shared on the FV3atm
forecast tasks. However, a large number of tasks for the mediator is generally not recommended since it may cause
slow performance. This means that the number of MPI tasks for CMEPS is given by

total_tasks_med = smaller of (300, FV3atm forecast tasks)

and in ufs.configure

MED_petlist_bounds: 0 total_tasks_med*num_threads_atm-1
MED_omp_num_threads: num_threads_atm

8.5. How do I set the total number of tasks for my job? 81

UFS Weather Model Users Guide

8.5.4 MOM6

For MOM6 the only restriction currently on the number of MPI ranks used by MOM6 is that it is divisible by 2. The
starting PET in ufs.configure will be the last PET of the preceding component, incremented by one. Threading in
MOM6 is not recommended at this time.

OCN_petlist_bounds: starting_OCN_PET total_tasks_ocn+starting_OCN_PET-1
OCN_omp_num_threads: 1

8.5.5 CICE

CICE requires setting the decomposition shape, the number of requested processors and the calculated block sizes in
the ice_in namelist. In UFS, the decomposition shape is always SlenderX2, except for the 5 deg configuration, which
is SlenderX1.

For SlenderX2 decomposition, a given nprocs, and global domain nx_global, ny_global, the block sizes are given
by

block_size_y = ny_global/2
block_size_x = nx_global/(nprocs/2)

Similarily, for SlenderX1

block_size_y = ny_global
block_size_x = nx_global/nprocs

For the 1-deg CICE domain for example, ice_in would be

nprocs = 10
nx_global = 360
ny_global = 320
block_size_x = 72
block_size_y = 160
max_blocks = -1
processor_shape = 'slenderX2'

In UFS, only a single thread is used for CICE so for nprocs set in ice_in, the tasks in ufs.configure are set as:

ICE_petlist_bounds: starting_ICE_PET nprocs+starting_ICE_PET-1
ICE_omp_num_threads: 1

The starting ICE PET in ufs.configure will be the last PET of the preceding component, incremented by one.

8.5.6 WW3

The WW3 component requires setting only the MPI ranks available for WW3 and the number of threads to be used.

WAV_petlist_bounds: starting_WAV_PET num_tasks_wav*num_threads_wav+starting_WAV_
→˓PET-1
WAV_omp_num_threads: num_threads_wav

The starting WAV PET in ufs.configure will be the last PET of the preceding component, incremented by one.

82 Chapter 8. FAQ

UFS Weather Model Users Guide

8.5.7 Example: 5-component ufs.configure

For the fully coupled S2SWA application, a sample ufs.configure is shown below :

###
UFS Run-Time Configuration File
###

ESMF
logKindFlag: ESMF_LOGKIND_MULTI
globalResourceControl: true

EARTH
EARTH_component_list: MED ATM CHM OCN ICE WAV
EARTH_attributes::
Verbosity = 0

::

MED
MED_model: cmeps
MED_petlist_bounds: 0 767
MED_omp_num_threads: 2
::

ATM
ATM_model: fv3
ATM_petlist_bounds: 0 863
ATM_omp_num_threads: 2
ATM_attributes::
Verbosity = 0
DumpFields = false
ProfileMemory = false
OverwriteSlice = true

::

CHM
CHM_model: gocart
CHM_petlist_bounds: 0 767
CHM_omp_num_threads: 2
CHM_attributes::
Verbosity = 0

::

OCN
OCN_model: mom6
OCN_petlist_bounds: 864 983
OCN_omp_num_threads: 1
OCN_attributes::
Verbosity = 0
DumpFields = false
ProfileMemory = false
OverwriteSlice = true

(continues on next page)

8.5. How do I set the total number of tasks for my job? 83

UFS Weather Model Users Guide

(continued from previous page)

mesh_ocn = mesh.mx025.nc
::

ICE
ICE_model: cice6
ICE_petlist_bounds: 984 1031
ICE_omp_num_threads: 1
ICE_attributes::
Verbosity = 0
DumpFields = false
ProfileMemory = false
OverwriteSlice = true
mesh_ice = mesh.mx025.nc
stop_n = 3
stop_option = nhours
stop_ymd = -999

::

WAV
WAV_model: ww3
WAV_petlist_bounds: 1032 1191
WAV_omp_num_threads: 2
WAV_attributes::
Verbosity = 0
OverwriteSlice = false
diro = "."
logfile = wav.log
mesh_wav = mesh.gwes_30m.nc
multigrid = false

::

CMEPS warm run sequence
runSeq::
@1800
MED med_phases_prep_ocn_avg
MED -> OCN :remapMethod=redist
OCN
@300
MED med_phases_prep_atm
MED med_phases_prep_ice
MED med_phases_prep_wav_accum
MED med_phases_prep_wav_avg
MED -> ATM :remapMethod=redist
MED -> ICE :remapMethod=redist
MED -> WAV :remapMethod=redist
ATM phase1
ATM -> CHM
CHM
CHM -> ATM
ATM phase2
ICE
WAV

(continues on next page)

84 Chapter 8. FAQ

UFS Weather Model Users Guide

(continued from previous page)

ATM -> MED :remapMethod=redist
MED med_phases_post_atm
ICE -> MED :remapMethod=redist
MED med_phases_post_ice
WAV -> MED :remapMethod=redist
MED med_phases_post_wav
MED med_phases_prep_ocn_accum

@
OCN -> MED :remapMethod=redist
MED med_phases_post_ocn
MED med_phases_restart_write
@
::

CMEPS variables

DRIVER_attributes::
::

MED_attributes::
ATM_model = fv3
ICE_model = cice6
OCN_model = mom6
WAV_model = ww3
history_n = 1
history_option = nhours
history_ymd = -999
coupling_mode = nems_frac
history_tile_atm = 384

::
ALLCOMP_attributes::
ScalarFieldCount = 2
ScalarFieldIdxGridNX = 1
ScalarFieldIdxGridNY = 2
ScalarFieldName = cpl_scalars
start_type = startup
restart_dir = RESTART/
case_name = ufs.cpld
restart_n = 3
restart_option = nhours
restart_ymd = -999
dbug_flag = 0
use_coldstart = false
use_mommesh = true
eps_imesh = 1.0e-1
stop_n = 6
stop_option = nhours
stop_ymd = -999

::

8.5. How do I set the total number of tasks for my job? 85

UFS Weather Model Users Guide

86 Chapter 8. FAQ

CHAPTER

NINE

ACRONYMS

Acronyms Explanation
AOML NOAA’s Atlantic Oceanographic and Meteorological Laboratory
API Application Programming Interface
b4b Bit-for-bit
CCPP Common Community Physics Package
dycore Dynamical core
EDMF Eddy-Diffusivity Mass Flux
EMC Environmental Modeling Center
ESMF The Earth System Modeling Framework
ESRL NOAA Earth System Research Laboratories
FMS Flexible Modeling System
FV3 Finite-Volume Cubed Sphere
GFDL NOAA Geophysical Fluid Dynamics Laboratory
GFS Global Forecast System
GSD Global Systems Division
HTML Hypertext Markup Language
LSM Land Surface Model
MPI Message Passing Interface
NCAR National Center for Atmospheric Research
NCEP National Centers for Environmental Predicction
NEMS NOAA Environmental Modeling System
NOAA National Oceanic and Atmospheric Administration
NSSL National Severe Storms Laboratory
PBL Planetary Boundary Layer
PR Pull request
RRTMG Rapid Radiative Transfer Model for Global Circulation Models
SAS Simplified Arakawa-Schubert
SDF Suite Definition File
sfc Surface
SHUM Perturbed boundary layer specific humidity
SKEB Stochastic Kinetic Energy Backscatter
SPPT Stochastically Perturbed Physics Tendencies
TKE Turbulent Kinetic Energy
UFS Unified Forecast System
WM Weather Model

87

UFS Weather Model Users Guide

88 Chapter 9. Acronyms

CHAPTER

TEN

GLOSSARY

advect
To transport substances in the atmostphere by advection.

advection
According to the American Meteorological Society (AMS) definition, advection is “The process of transport of
an atmospheric property solely by the mass motion (velocity field) of the atmosphere.” In common parlance,
advection is movement of atmospheric substances that are carried around by the wind.

ATM
The Weather Model configuration that runs only the standalone atmospheric model.

AQM
The Air Quality Model (AQM) is a UFS Application that dynamically couples the Community Multiscale Air
Quality (CMAQ) model with the UFS Weather Model through the NUOPC Layer to simulate temporal and spatial
variations of atmospheric compositions (e.g., ozone and aerosol compositions). The CMAQ, treated as a column
chemistry model, updates concentrations of chemical species (e.g., ozone and aerosol compositions) at each
integration time step. The transport terms (e.g., advection and diffusion) of all chemical species are handled by
the UFS Weather Model as tracers.

CCPP
The Common Community Physics Package is a forecast-model agnostic, vetted collection of code containing
atmospheric physical parameterizations and suites of parameterizations for use in Numerical Weather Prediction
(NWP) along with a framework that connects the physics to the host forecast model.

CCPP-Framework
The infrastructure that connects physics schemes with a host model; also refers to a software repository of the
same name

CCPP-Physics
The pool of CCPP-compliant physics schemes; also refers to a software repository of the same name

CDEPS
The Community Data Models for Earth Predictive Systems repository (CDEPS) contains a set of NUOPC-
compliant data components and ESMF-based “stream” code that selectively removes feedback in coupled model
systems. In essence, CDEPS handles the static Data Atmosphere (DATM) integration with dynamic coupled
model components (e.g., MOM6). The CDEPS data models perform the basic function of reading external data
files, modifying those data, and then sending the data back to the CMEPS mediator. The fields sent to the medi-
ator are the same as those that would be sent by an active component. This takes advantage of the fact that the
mediator and other CMEPS-compliant model components have no fundamental knowledge of whether another
component is fully active or just a data component. More information about DATM is available in the CDEPS
Documentation.

CESM
The Community Earth System Model (CESM) is a fully-coupled global climate model developed at the National
Center for Atmospheric Research (NCAR) in collaboration with colleagues in the research community.

89

https://glossary.ametsoc.org/wiki/Advection
https://github.com/NOAA-EMC/AQM
https://dtcenter.org/community-code/common-community-physics-package-ccpp
https://github.com/NOAA-EMC/CDEPS/
https://escomp.github.io/CDEPS/versions/master/html/index.html
https://escomp.github.io/CDEPS/versions/master/html/index.html
https://www.cesm.ucar.edu/

UFS Weather Model Users Guide

chgres_cube
The preprocessing software used to create initial and boundary condition files to “coldstart” the forecast model.
It is part of UFS_UTILS.

CICE
CICE6
Sea Ice Model

CICE is a computationally efficient model for simulating the growth, melting, and movement of polar sea ice.
It was designed as one component of a coupled atmosphere-ocean-land-ice global climate model. CICE has
several interacting components, including a model of ice dynamics, a transport model that describes advection
of different state variables; and a vertical physics package called “Icepack”.

CMAQ
The Community Multiscale Air Quality Model (CMAQ, pronounced “cee-mak”) is a numerical air quality model
that predicts the concentration of airborne gases and particles and the deposition of these pollutants back to
Earth’s surface. The purpose of CMAQ is to provide fast, technically sound estimates of ozone, particulates,
toxics, and acid deposition. CMAQ is an active open-source development project of the U.S. Environmental
Protection Agency (EPA). Code is publicly availably at https://github.com/USEPA/CMAQ.

CMEPS
The Community Mediator for Earth Prediction Systems (CMEPS) is a NUOPC-compliant mediator used for
coupling Earth system model components. It is currently being used in NCAR’s Community Earth System
Model (CESM) and NOAA’s subseasonal-to-seasonal (S2S) coupled system. More information is available in
the CMEPS Documentation.

cron
cron job
crontab
cron table

Cron is a job scheduler accessed through the command-line on UNIX-like operating systems. It is useful for
automating tasks such as regression testing. Cron periodically checks a cron table (aka crontab) to see if any
tasks are are ready to execute. If so, it runs them.

data assimilation
Data assimilation is the process of combining observations, model data, and error statistics to achieve the best
estimate of the state of a system. One of the major sources of error in weather and climate forecasts is uncertainty
related to the initial conditions that are used to generate future predictions. Even the most precise instruments
have a small range of unavoidable measurement error, which means that tiny measurement errors (e.g., related
to atmospheric conditions and instrument location) can compound over time. These small differences result in
very similar forecasts in the short term (i.e., minutes, hours), but they cause widely divergent forecasts in the
long term. Errors in weather and climate forecasts can also arise because models are imperfect representations
of reality. Data assimilation systems seek to mitigate these problems by combining the most timely observational
data with a “first guess” of the atmospheric state (usually a previous forecast) and other sources of data to provide
a “best guess” analysis of the atmospheric state to start a weather or climate simulation. When combined with
an “ensemble” of model runs (many forecasts with slightly different conditions), data assimilation helps predict
a range of possible atmospheric states, giving an overall measure of uncertainty in a given forecast.

DATM
DATM is the Data Atmosphere component of CDEPS. It uses static atmospheric forcing files (derived from
observations or previous atmospheric model runs) instead of output from an active atmospheric model. This
reduces the complexity and computational cost associated with coupling to an active atmospheric model. The
Data Atmosphere component is particularly useful when employing computationally intensive Data Assimilation
(DA) techniques to update ocean and/or sea ice fields in a coupled model. In general, use of DATM in place of
ATM can be appropriate when users are running a coupled model and only want certain components of the model
to be active. More information about DATM is available in the CDEPS Documentation.

DOCN

90 Chapter 10. Glossary

https://github.com/NOAA-EMC/CICE
https://www.epa.gov/cmaq/cmaq-models-0
https://github.com/USEPA/CMAQ
https://github.com/NOAA-EMC/CMEPS
https://escomp.github.io/CMEPS/versions/master/html/index.html
https://escomp.github.io/CDEPS/versions/master/html/datm.html

UFS Weather Model Users Guide

DOCN is the Data Ocean component of CDEPS. It uses static ocean forcing files (derived from observations
or previous ocean model runs) instead of output from an active ocean model. This reduces the complexity and
computational cost associated with coupling to an active ocean model. The Data Ocean component is particularly
useful when employing computationally intensive Data Assimilation (DA) techniques to update atmospheric
fields in a coupled model. In general, use of DOCN in place of MOM6 or HYCOM can be appropriate when
users are running a coupled model and only want certain components of the model to be active. More information
about DOCN is available in the CDEPS Documentation.

dycore
dynamical core

Global atmospheric model based on fluid dynamics principles, including Euler’s equations of motion.

EMC
The Environmental Modeling Center is one of NCEP’s nine centers and leads the National Weather Service’s
modeling efforts.

ESMF
Earth System Modeling Framework. The ESMF defines itself as “a suite of software tools for developing high-
performance, multi-component Earth science modeling applications.” It is a community-developed software in-
frastructure for building and coupling models.

FMS
The Flexible Modeling System (FMS) is a software framework for supporting the efficient development, con-
struction, execution, and scientific interpretation of atmospheric, oceanic, and climate system models.

FV3
FV3 dycore
FV3 dynamical core

The Finite-Volume Cubed-Sphere dynamical core (dycore). Developed at NOAA’s Geophysical Fluid Dynamics
Laboratory (GFDL), it is a scalable and flexible dycore capable of both hydrostatic and non-hydrostatic atmo-
spheric simulations. It is the dycore used in the UFS Weather Model.

GOCART
NASA’s Goddard Chemistry Aerosol Radiation and Transport (GOCART) model simulates the distribution of
major tropospheric aerosol types, including sulfate, dust, organic carbon (OC), black carbon (BC), and sea salt
aerosols. The UFS Weather Model integrates a prognostic aerosol component using GOCART. The code is
publicly available on GitHub at https://github.com/GEOS-ESM/GOCART.

HPC-Stack
The HPC-Stack is a repository that provides a unified, shell script-based build system for building the software
stack required for numerical weather prediction (NWP) tools such as the Unified Forecast System (UFS) and the
Joint Effort for Data assimilation Integration (JEDI) framework.

HAFS
The Hurricane Analysis and Forecast System (HAFS) is a UFS application for hurricane forecasting. It is an
FV3-based multi-scale model and data assimilation (DA) system capable of providing analyses and forecasts of
the inner core structure of tropical cyclones (TC) — including hurricanes and typhoons — out to 7 days. This
is key to improving size and intensity predictions. HAFS also provides analyses and forecasts of the large-scale
environment that is known to influence a TC’s motion. HAFS development targets an operational analysis and
forecast system for hurricane forecasters with reliable, robust and skillful guidance on TC track and intensity (in-
cluding rapid intensification), storm size, genesis, storm surge, rainfall, and tornadoes associated with TCs. Cur-
rently, HAFS is under active development with collaborative efforts among NCEP/EMC, AOML/HRD, GFDL,
ESRL/GSD, ESRL/NESII, OFCM/AOC, and NCAR/DTC.

HYCOM
The HYbrid Coordinate Ocean Model (HYCOM) was developed to address known shortcomings in the vertical
coordinate scheme of the Miami Isopycnic-Coordinate Ocean Model (MICOM). HYCOM is a primitive equation,
general circulation model with vertical coordinates that remain isopycnic in the open, stratified ocean. However,

91

https://escomp.github.io/CDEPS/versions/master/html/docn.html
https://www.emc.ncep.noaa.gov/emc_new.php
https://earthsystemmodeling.org/docs/release/latest/ESMF_usrdoc/
https://www.gfdl.noaa.gov/
https://www.gfdl.noaa.gov/
https://github.com/GEOS-ESM/GOCART
https://github.com/NOAA-EMC/hpc-stack
https://ufscommunity.org/
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/
https://github.com/NOAA-EMC/HAFS
https://www.hycom.org/

UFS Weather Model Users Guide

the isopycnal vertical coordinates smoothly transition to z-coordinates in the weakly stratified upper-ocean mixed
layer, to terrain-following sigma coordinates in shallow water regions, and back to z-level coordinates in very
shallow water. The latter transition prevents layers from becoming too thin where the water is very shallow.
See the HYCOM User’s Guide for more information on using the model. The HYCOM model code is publicly
available on GitHub.

LND
land component

The Noah Multi-Physics (Noah-MP) land surface model (LSM) is an open-source, community-developed LSM
that has been incorporated into the UFS Weather Model (WM). It is the UFS WM’s land component.

Mediator
A mediator, sometimes called a coupler, is a software component that includes code for representing compo-
nent interactions. Typical operations include merging data fields, ensuring consistent treatment of coastlines,
computing fluxes, and temporal averaging.

MOM
MOM6
Modular Ocean Model

MOM6 is the latest generation of the Modular Ocean Model. It is numerical model code for simulating the ocean
general circulation. MOM6 was originally developed by the Geophysical Fluid Dynamics Laboratory. Currently,
MOM6 code and an extensive suite of test cases are available under an open-development software framework.
Although there are many public forks of MOM6, the NOAA EMC fork is used in the UFS Weather Model.

MRW
MRW App

The Medium-Range Weather Application is a UFS Application that targets predictions of atmospheric behavior
out to about two weeks. It packages a prognostic atmospheric model (the UFS Weather Model), pre- and post-
processing tools, and a community workflow.

NCAR
The National Center for Atmospheric Research.

NCEP
National Centers for Environmental Prediction (NCEP) is a branch of the National Weather Service and consists
of nine centers, including the Environmental Modeling Center. More information can be found at https://www.
ncep.noaa.gov.

NCEPLIBS
The software libraries created and maintained by NCEP that are required for running chgres_cube, the UFS
Weather Model, and the UPP. They are included in spack-stack and HPC-Stack.

NCEPLIBS-external
A collection of third-party libraries required to build NCEPLIBS, chgres_cube, the UFS Weather Model, and the
UPP. They are included in spack-stack and HPC-Stack.

NEMS
The NOAA Environmental Modeling System is a common modeling framework whose purpose is to streamline
components of operational modeling suites at NCEP.

netCDF
NetCDF (Network Common Data Form) is a file format and community standard for storing multidimensional
scientific data. It includes a set of software libraries and machine-independent data formats that support the
creation, access, and sharing of array-oriented scientific data.

NG-GODAS
Next Generation-Global Ocean Data Assimilation System. NG-GODAS is a UFS Weather Model configura-
tion that couples ocean (MOM6), sea ice (CICE6), and Data Assimilation (DA) capabilities with the DATM
component of CDEPS.

92 Chapter 10. Glossary

https://www.hycom.org/attachments/063_hycom_users_guide.pdf
https://github.com/NOAA-EMC/HYCOM-src
https://www.gfdl.noaa.gov/mom-ocean-model/
https://github.com/mom-ocean/MOM6
https://github.com/NOAA-GFDL/MOM6-examples/wiki
https://github.com/NOAA-EMC/MOM6
https://github.com/ufs-community/ufs-mrweather-app
https://ncar.ucar.edu/
https://www.ncep.noaa.gov
https://www.ncep.noaa.gov
https://github.com/JCSDA/spack-stack
https://github.com/NOAA-EMC/hpc-stack
https://www.unidata.ucar.edu/software/netcdf/

UFS Weather Model Users Guide

NUOPC
National Unified Operational Prediction Capability

The National Unified Operational Prediction Capability is a consortium of Navy, NOAA, and Air Force modelers
and their research partners. It aims to advance the weather modeling systems used by meteorologists, mission
planners, and decision makers. NUOPC partners are working toward a common model architecture — a standard
way of building models — in order to make it easier to collaboratively build modeling systems.

NUOPC Layer
The NUOPC Layer “defines conventions and a set of generic components for building coupled models using
the Earth System Modeling Framework (ESMF).” NUOPC applications are built on four generic components:
driver, model, mediator, and connector. For more information, visit the NUOPC website.

NWP
Numerical Weather Prediction

Numerical Weather Prediction (NWP) takes current observations of weather and processes them with computer
models to forecast the future state of the weather.

NWS
The National Weather Service (NWS) is an agency of the United States government that is tasked with providing
weather forecasts, warnings of hazardous weather, and other weather-related products to organizations and the
public for the purposes of protection, safety, and general information. It is a part of the National Oceanic and
Atmospheric Administration (NOAA) branch of the Department of Commerce.

Parameterizations
Simplified functions that approximate the effects of small-scale processes (e.g., microphysics, gravity wave drag)
that cannot be explicitly resolved by a model grid’s representation of the earth. Common categories of param-
eterizations include radiation, surface layer, planetary boundary layer and vertical mixing, deep and shallow
cumulus, and microphysics. Parameterizations can be grouped together into physics suites (such as the CCPP
physics suites), which are sets of parameterizations known to work well together.

Post-processor
Software that enhances the value of the raw forecasts produced by the modeling application to make them more
useful. At NCEP, the UPP (Unified Post Processor) software is used to convert data from spectral to gridded for-
mat, de-stagger grids, interpolate data vertically (e.g., to isobaric levels) and horizontally (to various predefined
grids), and to compute derived variables. Some types of post-processors, such as statistical post-processors, use
historical information of previous runs and observations to de-bias and calibrate its output.

RT
Regression test

Tests to validate that software still performs as expected after a change. In general, RTs ensure that the code
should produce the same results and performance, within predefined measures of variance. When a code change
is designed to change results or performance, then a new baseline is created. From these baselines, regression
tests determine whether a change has occurred.

SRW
SRW App
Short-Range Weather Application

The Short-Range Weather Application is a UFS Application that targets predictions of atmospheric behavior
on a limited spatial domain and on time scales from minutes out to about two days. It packages a prognostic
atmospheric model (the UFS Weather Model), pre- and post-processing tools, and a community workflow.

spack-stack
The spack-stack is a collaborative effort between the NOAA Environmental Modeling Center (EMC), the UCAR
Joint Center for Satellite Data Assimilation (JCSDA), and the Earth Prediction Innovation Center (EPIC). spack-
stack is a repository that provides a Spack-based method for building the software stack required for numerical
weather prediction (NWP) tools such as the Unified Forecast System (UFS) and the Joint Effort for Data assim-
ilation Integration (JEDI) framework. spack-stack uses the Spack package manager along with custom Spack
configuration files and Python scripts to simplify installation of the libraries required to run various applications.

93

https://earthsystemmodeling.org/nuopc/
https://earthsystemmodeling.org/nuopc/
https://www.weather.gov/
https://github.com/ufs-community/ufs-srweather-app
https://github.com/JCSDA/spack-stack
https://ufscommunity.org/
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/

UFS Weather Model Users Guide

The spack-stack can be installed on a range of platforms and comes pre-configured for many systems. Users
can install the necessary packages for a particular application and later add the missing packages for another
application without having to rebuild the entire stack.

Suite Definition File (SDF)
An external file containing information about the construction of a physics suite. It describes the schemes that are
called, in which order they are called, whether they are subcycled, and whether they are assembled into groups
to be called together

Suite
A collection of primary physics schemes and interstitial schemes that are known to work well together

tracer
According to the American Meteorological Society (AMS) definition, a tracer is “Any substance in the atmo-
sphere that can be used to track the history [i.e., movement] of an air mass.” Tracers are carried around by the
motion of the atmosphere (i.e., by advection). These substances are usually gases (e.g., water vapor, CO2), but
they can also be non-gaseous (e.g., rain drops in microphysics parameterizations). In weather models, tempera-
ture (or potential temperature), absolute humidity, and radioactivity are also usually treated as tracers. According
to AMS, “The main requirement for a tracer is that its lifetime be substantially longer than the transport process
under study.”

UFS
Unified Forecast System

The Unified Forecast System (UFS) is a community-based, coupled, comprehensive Earth system modeling
system. The UFS numerical applications span regional to global domains and sub-hourly to seasonal time scales.
The UFS is designed to support the Weather Enterprise and to be the source system for NOAA’s operational
numerical weather prediction (NWP) applications. For more information, visit https://ufscommunity.org/.

UFS_UTILS
The UFS Utilities repository (UFS_UTILS) contains a collection of pre-processing programs for use with the
UFS Weather Model and UFS applications. These programs set up the model grid and create coldstart initial
conditions. The code is publicly available on the UFS_UTILS Github repository.

UPP
Unified Post Processor

The Unified Post Processor is the post-processor software developed at NCEP. It is used operationally to convert
the raw output from a variety of NCEP’s NWP models, including the FV3 dycore, to a more useful form.

WW3
WWIII
WaveWatch III

WAVEWATCH III (WW3) is a community wave modeling framework that includes the latest scientific advance-
ments in the field of wind-wave modeling and dynamics. The core of the framework consists of the WAVE-
WATCH III third-generation wave model (WAVE-height, WATer depth and Current Hindcasting), developed at
NOAA/NCEP. WAVEWATCH III differs from its predecessors in many important points such as governing equa-
tions, model structure, numerical methods and physical parameterizations. The model code is publicly available
on GitHub at https://github.com/NOAA-EMC/WW3.

Weather Enterprise
Individuals and organizations from public, private, and academic sectors that contribute to the research, devel-
opment, and production of weather forecast products; primary consumers of these weather forecast products.

WM
Weather Model

A prognostic model that can be used for short- and medium-range research and operational forecasts. It can be
an atmosphere-only model or be an atmospheric model coupled with one or more additional components, such
as a wave or ocean model. The UFS Weather Model repository is publicly available on GitHub.

94 Chapter 10. Glossary

https://glossary.ametsoc.org/wiki/Tracer
https://ufscommunity.org/
https://github.com/ufs-community/UFS_UTILS
https://github.com/ufs-community/UFS_UTILS
https://dtcenter.org/community-code/unified-post-processor-upp
https://github.com/NOAA-EMC/WW3
https://github.com/ufs-community/ufs-weather-model

BIBLIOGRAPHY

[BDT+20] L. Bengtsson, J. Dias, S. Tulich, M. Gehne, and J. Bao. A stochastic parameterization of organized trop-
ical convection using cellular automata for global forecasts in noaa's unified forecast system. Journal of
Advances in Modeling Earth Systems, 2020. URL: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/
2020MS002260.

95

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020MS002260
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020MS002260

UFS Weather Model Users Guide

96 Bibliography

INDEX

A
advect, 89
advection, 89
AQM, 89
ATM, 89

C
CCPP, 89
CCPP-Framework, 89
CCPP-Physics, 89
CDEPS, 89
CESM, 89
chgres_cube, 90
CICE, 90
CICE6, 90
CMAQ, 90
CMEPS, 90
cron, 90
cron job, 90
cron table, 90
crontab, 90

D
data assimilation, 90
DATM, 90
DOCN, 90
dycore, 91
dynamical core, 91

E
EMC, 91
ESMF, 91

F
FMS, 91
FV3, 91
FV3 dycore, 91
FV3 dynamical core, 91

G
GOCART, 91

H
HAFS, 91
HPC-Stack, 91
HYCOM, 91

L
land component, 92
LND, 92

M
Mediator, 92
Modular Ocean Model, 92
MOM, 92
MOM6, 92
MRW, 92
MRW App, 92

N
National Unified Operational Prediction

Capability, 93
NCAR, 92
NCEP, 92
NCEPLIBS, 92
NCEPLIBS-external, 92
NEMS, 92
netCDF, 92
NG-GODAS, 92
Numerical Weather Prediction, 93
NUOPC, 93
NUOPC Layer, 93
NWP, 93
NWS, 93

P
Parameterizations, 93
Post-processor, 93

R
Regression test, 93
RT, 93

97

UFS Weather Model Users Guide

S
Sea Ice Model, 90
Short-Range Weather Application, 93
spack-stack, 93
SRW, 93
SRW App, 93
Suite, 94
Suite Definition File (SDF), 94

T
tracer, 94

U
UFS, 94
UFS_UTILS, 94
Unified Forecast System, 94
Unified Post Processor, 94
UPP, 94

W
WaveWatch III, 94
Weather Enterprise, 94
Weather Model, 94
WM, 94
WW3, 94
WWIII, 94

98 Index

	Introduction
	Technical Overview
	Supported Platforms and Compilers for Running the UFS Weather Model
	Level 1 Systems
	Level 2-4 Systems

	UFS Weather Model Hierarchical Repository Structure
	Directory Structure

	Building and Running the UFS Weather Model
	Supported Platforms & Compilers
	Prerequisite Libraries
	Common Modules

	Get Data
	Downloading the Weather Model Code
	Building the Weather Model
	Loading the Required Modules
	On NOAA Level 1 & 2 Systems
	On Other Systems

	Setting the CMAKE_FLAGS and CCPP_SUITES Environment Variables
	ATM Configurations
	S2S Configurations
	NG-GODAS Configuration
	HAFS Configurations
	LND Configuration

	Building the Model

	Running the Model
	Using the Regression Test Script
	The rt.conf File
	On NOAA RDHPCS
	On Other Systems
	The rt.sh File
	Optional Arguments
	Troubleshooting

	Log Files
	Creating a New Test

	Using the Operational Requirement Test Script

	Data: Input, Model Configuration, and Output Files
	Input files
	ATM
	Static Datasets (i.e., fix files)
	Grid Description and Initial Condition Files

	MOM6
	Static Datasets (i.e., fix files)
	Grid Description and Initial Condition Files

	HYCOM
	Static Datasets (i.e., fix files)
	Grid Description and Initial Condition Files

	CICE6
	Static Datasets (i.e., fix files)
	Grid Description and Initial Condition Files

	WW3
	Static Datasets (i.e., fix files)
	Grid Description and Initial Condition Files
	Mesh Generation

	CDEPS
	Static Datasets (i.e., fix files)
	Grid Description and Initial Condition Files

	GOCART
	Static Datasets (i.e., fix files)
	Grid Description and Initial Condition Files

	AQM (CMAQ)
	Static Datasets (i.e., fix files)

	LND
	Static Datasets (i.e., fix files)
	Grid Description and Initial Condition Files
	Additional Files

	Model configuration files
	diag_table file
	field_table file
	model_configure file
	ufs.configure file
	The Suite Definition File (SDF) File
	datm.streams
	datm_in
	blkdat.input
	Namelist file input.nml
	fms_io_nml
	namsfc
	atmos_model_nml
	gfs_physics_nml

	Output files
	FV3Atm
	MOM6
	HYCOM
	CICE6
	WW3
	CMEPS

	Additional Information about the FMS Diagnostic Manager
	Diagnostic Manager Namelist

	Additional Information about the Write Component

	Configurations
	Background
	Atmospheric Model Configurations
	ATM - Standalone Atmospheric Model
	ATMW
	ATMAERO
	ATMAQ
	ATML

	Rapid Refresh Forecast System (RRFS)
	LND
	Seasonal to Subseasonal (S2S) Configurations
	NG-GODAS
	Hurricane Analysis and Reforecast System Configurations

	Configuration Parameters
	Build Configuration Parameters
	Configuration Options
	Physics Options
	Other Build Options

	Automated Testing
	CI/CD
	Auto RT
	AutoRT Workflow

	FAQ
	How do I build and run a single test of the UFS Weather Model?
	How do I change the length of the model run?
	How do I set the output history interval?
	How do I turn off IO for the components of the coupled model?
	FV3atm restart and history files
	MOM6, CICE6 and CMEPS restart files
	MOM6 history files
	CICE history files
	GOCART history files
	WW3 history and restart files

	How do I set the total number of tasks for my job?
	FV3atm
	GOCART
	CMEPS
	MOM6
	CICE
	WW3
	Example: 5-component ufs.configure

	Acronyms
	Glossary
	Bibliography
	Index

